Бесплатная библиотека стандартов и нормативов www.docload.ru

Все документы, размещенные на этом сайте, не являются их официальным изданием и предназначены исключительно для ознакомительных целей.
Электронные копии этих документов могут распространяться без всяких ограничений. Вы можете размещать информацию с этого сайта на любом другом сайте.
Это некоммерческий сайт и здесь не продаются документы. Вы можете скачать их абсолютно бесплатно!
Содержимое сайта не нарушает чьих-либо авторских прав! Человек имеет право на информацию!

 

ВЕДОМСТВЕННЫЕ СТРОИТЕЛЬНЫЕ НОРМЫ

НОРМЫ
ПРОЕКТИРОВАНИЯ КОНТАКТНОЙ СЕТИ

ВСН 141-90

Минтрансстрой

МИНИСТЕРСТВО ТРАНСПОРТНОГО СТРОИТЕЛЬСТВА СССР

МОСКВА 1992

Разработаны Всесоюзным ордена Октябрьской Революции научно-исследовательским институтом транспортного строительства (ЦНИИС) МИНТРАНССТРОЯ СССР (доктор техн. наук В. П. Шурыгин, кандидаты техн. наук Л. П. Чучев, Л. Ф. Белов, А. А. Орел, В. Я. Кулага, Ф. Б. Глазман, Ю. С. Рягузов, А. И. Шелест; инженеры В. А. Балаш, В. В.-Стыцюк), Трансэлектропроектом (инженеры В. Я. Новогрудский и Г. Н. Брод), ЛИИЖТом (кандидат техн. наук Л. Л. Кудрявцев, инж. Л. В. Котомкчи), ВНИИЖТом (кандидат техн. наук. В. И. Подольский).

Внесены Всесоюзным ордена Октябрьской Революции научно-исследовательским институтом транспортного строительства.

Подготовлены к утверждению Главным научно-техническим управлением Минтрансстроя СССР.

С введением в действие «Норм проектирования контактной сети» ВСН 141-90 утрачивают силу «Нормы проектирования конструкций контактной сети» ВСН 141-84.

Согласованы Главным управлением электрификации и электроснабжения МПС, Главным управлением проектирования и капитального строительства Минтрансстроя СССР.

Настоящие Нормы разработаны в развитие соответствующих глав II ч. СНиП с учетом переработки «Норм проектирования конструкции контактной сети» ВСН 141-84 и научных исследований, выполненных в ЦНИИСе, ЛИИЖТе, МИИТе, ВНИИЖТе в 1985-1989 гг.

Нормы содержат основные положения расчета конструкций контактной сети, включая правила проектирования стальных и железобетонных опор, поддерживающих и фиксирующих устройств, фундаментов для опор, определения нагрузок, расчета длин пролетов, расчета контактных подвесок с дополнительной проверкой надежности, а также правила привязки типовых конструкций.

Министерство транспортного

Ведомственные строительные нормы

ВСН 141-89

Минтрансстрой

строительства (Минтрансстрой)

Нормы проектирования контактной сети

Взамен ВСН 141-84

ОБЩИЕ ПОЛОЖЕНИЯ

1.1. Данные нормы распространяются на проектирование и расчет типовых и индивидуальных конструкций контактной сети электрифицируемых железных дорог и ВЛ, подвешиваемых на опорах контактной сети, на расчеты длин пролетов и привязку типовых конструкций в конкретных проектах электрифицируемых участков железных дорог.

1.2. Проектирование строительных конструкций контактной сети следует осуществлять с выполнением требований глав II ч. СНиП, а также стандартов СЭВ-СТСЭВ 384-78 «Надежность строительных конструкций и оснований. Основные положения по расчету», СТ СЭВ 3972-83 «Надежность строительных конструкций и оснований. Конструкции стальные. Основные положения и расчеты» и СТ СЭВ 1407-78 «Надежность строительных конструкций и оснований. Нагрузки и воздействия. Основные положения».

Кроме этого, необходимо руководствоваться требованиями данных «Норм проектирования», учитывающих специфические особенности работы контактной сети.

 

Внесены Всесоюзным ордена Октябрьской Революции научно-исследовательским институтом транспортного строительства (ЦНИИС)

Утверждены постановлением Министерства транспортного строительства

Срок введения в действие - 1 июля 1991г.

 

1.3. При проектировании конструкций контактной сети следует:

выполнять требования «Технических правил по экономному расходованию основных строительных материалов ТП-101-81*, М., 1985 г.;

применять экономичные профили проката и эффективные марки сталей (в т. ч. коррозионностойкие и высокопрочные);

применять прогрессивные конструкции (комбинированные из двух марок стали, предварительно напряженные, из высокопрочных пластмасс);

предусматривать технологичность изготовления и монтажа конструкций, а также их ремонтопригодность в эксплуатации;

обеспечивать заданный срок работы конструкций в эксплуатации;

выполнять требования государственных стандартов;

обеспечивать наименьшие приведенные затраты на строительство и эксплуатацию.

1.4. При проектировании контактной сети следует применять унифицированные значения ее параметров (габарита опор, длины пролета, длины анкерных участков, длины струн).

Для массовых конструкций фундаментов, опор, поддерживающих, фиксирующих и анкеровочных устройств контактной сети следует разрабатывать типовые проекты и до массового применения в конкретных проектах проверять конструкции испытанием опытных образцов. В проекте должны быть схемы испытаний и значения контрольных нагрузок для них.

1.5. Расчет конструкций контактной сети следует производить по методу предельных состояний.

Повторяемость климатических нагрузок при расчете контактной сети следует принимать один раз в 10 лет.

1.6. Механический расчет проводов выполняется методами статического расчета согласно указаниям главы 3 данных норм. Длина пролета между опорами определяется методом динамического расчета в соответствии с методикой, изложенной в обязательном приложении 1.

1.7. Расчет опорных, поддерживающих и фиксирующих устройств контактной сети следует выполнять с учетом коэффициента надежности по назначению gп = 0,95. На коэффициент gп следует делить: предельные значения несущей способности, расчетные значения сопротивлений, предельные значения деформаций, раскрытия трещин или умножать: расчетные значения нагрузок, усилий или воздействий.

1.8. При расчете опор контактной сети по деформациям (предельному состоянию второй группы) следует определить изменение прогиба опоры от воздействия временных нормативных нагрузок, добавляя к ним нагрузки от изменения натяжения проводов. Изменение упругого прогиба консольных опор на уровне контактного провода (без учета поворота фундамента) не должно превышать ± 65 мм, а упругого прогиба вершины опор гибких поперечин должно быть не более 1/150 их высоты.

1.9. Расчет железобетонных опор по образованию или раскрытию трещин (вторая группа предельных состояний) следует осуществлять на сочетание постоянных нормативных нагрузок и временных климатических нагрузок годичной повторяемости: при этих нагрузках поперечные трещины в предварительно напряженных опорах с проволочной арматурой не допускаются.

1.10. Привязку типовых конструкций контактной сети в проектах электрифицируемых участков необходимо выполнять по расчетным нагрузкам; значения допустимых расчетных нагрузок должны быть приведены в типовых проектах конструкций контактной сети. Железобетонные опоры при привязке, кроме того, следует проверять по нагрузкам, допустимым по образованию или раскрытию трещин, определяемым согласно указаниям п. 1.9 данных Норм.

2. НАГРУЗКИ И ВОЗДЕЙСТВИЯ

2.1. Нагрузки, действующие на контактную сеть, подразделяются на постоянные и временные, а последние - на кратковременные и особые.

2.2. К постоянным относятся следующие нагрузки:

а) вес проводов, изоляторов, оборудования и арматуры контактной сети;

б) вес строительных конструкций опорных, поддерживающих, фиксирующих и анкеровочных устройств;

в) вес грунта (при расчете фундаментов опор);

г) усилия от натяжения и изменения направления проводов некомпенсированных (при среднегодовой температуре) и компенсированных.

Среднегодовую температуру следует определять по указаниям СНиП по строительной климатологии и геофизике.

2.3. К кратковременный относятся нагрузки:

а) давление ветра на провода, тросы и другие конструкции контактной сети;

б) вес гололеда на проводах, поддерживающих и фиксирующих устройствах;

в) вес гололеда на настилах опор и на жестких поперечинах;

г) усилия от дополнительного натяжения некомпенсированных проводов и изменения их направления при отклонениях минимальной температуры от среднегодовой;

д) вес монтера с инструментом на проводах или конструкциях;

Примечание. При определении натяжения тросов гибких поперечин следует учитывать указания пп. 2.2 и 2.3 при определении среднегодовой температуры и отклонений от нее;

е) нагрузки, возникающие при погрузке, разгрузке, перевозке и монтаже конструкций;

ж) нагрузки, возникающие при монтаже проводов контактной сети.

2.4. К особым нагрузкам и воздействиям относятся:

а) нагрузки, возникающие при обрыве проводов контактной сети;

б) сейсмические воздействия.

2.5. Расчет конструкции контактной сети необходимо производить на наиболее неблагоприятные сочетания нагрузок, действующих одновременно в процессе строительства или эксплуатации. При этом необходимо рассматривать основные и особые сочетания нагрузок.

В основные сочетания входят постоянные и возможные кратковременные нагрузки, наиболее существенно влияющие на напряженное состояние конструкции, например, постоянные нагрузки плюс воздействие одной или нескольких кратковременных нагрузок - максимального для данного района ветра, минимальной температуры при отсутствии гололеда и ветра, ветра на провода, покрытые гололедом, монтажных нагрузок при отсутствии гололеда, но при температуре минус 20 °С.

В особые сочетания входят возможные в действительных условиях постоянные и временные нагрузки при одновременном действии нагрузок, возникающих при обрыве проводов контактной сети или при сейсмических воздействиях.

2.6. Значения расчетных нагрузок, необходимых для расчета конструкций контактной сети, следует определять путем умножения каждой из нагрузок на соответствующий ей коэффициент надежности по нагрузке.

Постоянные нагрузки

2.7. Нагрузки от веса проводов, тросов, оборудования, деталей и конструкций контактной сети определяются по проектным данным, каталогам и справочным материалам.

Нормативную нагрузку от веса проводов, деталей и конструкций Qн1, подвешиваемых на опорах контактной сети определяют по формуле:

Qн1 = S(gl + Qн + QД),                                                                (1)

где g - линейная нагрузка от веса провода или цепной подвески, Н/м; l - расчетная длина пролета, м; Qн - нагрузка от изоляторов, Н; QД - нагрузка от деталей, Н.

При определении нагрузки на опорные, поддерживающие или фиксирующие устройства расчетную длину пролета принимают равной среднему арифметическому от длины двух пролетов, примыкающих к рассчитываемой опоре.

2.8. Коэффициент надежности по нагрузке для веса проводов деталей и конструкций контактной сети принимают равным 1,1.

Если уменьшение постоянной нагрузки может ухудшить условия работы конструкций контактной сети, то коэффициент надежности по нагрузке следует принимать равным 0,9.

2.9. Коэффициент надежности по нагрузке для натяжения компенсированных проводов и усилий, передаваемых от них на конструкции, нужно принимать равным 1,1.

Нагрузки в расчетном режиме, передаваемые на конструкции контактной сети от натяжения некомпенсированных проводов, определяют по уравнению состояния провода, принимав в исходном режиме нормативные значения нагрузок и соответствующие им натяжения провода. При этом следует учитывать требования пп. 2.17, 2.31, 2.35 и 2.41.

Ветровые нагрузки

2.10. При определении ветровой нагрузки для конкретных электрифицируемых участков следует руководствоваться указаниями СНиП по определению нагрузок и воздействий.

Ветровую нагрузку следует определять как сумму средней и пульсационной составляющих.

2.31. Нормативное значение ветрового давления qнз Па (скорости ветра vнз м/с) определяют:

qнз = К2vqo, vнз = Кvvo,                                                               (2)

где qo - нормативное значение парового давления, Па, принимаемое по табл. 1; vo - нормативное значение скорости ветра, м/с, повторяемостью 1 раз в 10 лет на высоте 10 м над уровнем земли;  - коэффициент изменения ветрового давления в зависимости от характера подстилающей поверхности и высоты насыпи (рис. 1); z -высота над поверхностью земли, м (рис. 2); zо - параметр шероховатости подстилающей поверхности, м, определяемый по табл. 2.

Таблица 1

Ветровые районы СССР (принимаются по СНиП 2.01.07-85)

Iа

I

II

III

IV

V

VI

VII

Давление ветра, Па

194

262

342

433

547

684

832

970

Скорость ветра, м/с

18

21

24

27

30

33

37

40

Примечание. Для малоизученных районов скорость и давление ветра следует принимать на район выше.

Таблица 2

№ пп

Тип местности

Параметр шероховатости, м

1

Места с резким усилением скорости ветра в результате искусственного формирования направленного потока (вдоль русла роки с высокими берегами, вдоль ущелья)

0,01

2

Открытая ровная поверхность без растительности - поверхность озер, водоемов и морей, поймы крупных рек

0,05

3

Степь, равнина, луг

0,10

4

Открытая холмистая местность или равнинная поверхность с редким лесом, садами, парками

0,20

5

Участки, защищенные лесозащитными насаждениями не подлежащими вырубке; станции в пределах станционных построек

0,50

6

Не подлежащий вырубке густой лес с высотой деревьев не менее 10 м; город со зданиями высотой более 10 м

1,00

Примечания: 1. Сооружение считается расположенным в местности данного типа, если эта местность сохраняется на расстоянии: для местности по п. 2-250 м; по п. 3 – 200 м, по п. 4 – 100 м, по п. 5 – 50 м, по п. 6 – 50 м.

2. Для местности по пп. 1-4 дано наименьшее значение параметра шероховатости для условий режима максимального ветра с учетом наличия снегового покрова. Эти же значения параметра шероховатости принимают и при гололеде.

3. Значение параметра шероховатости по п. 5 дано для случая, когда станционные постройки расположены с обеих сторон железнодорожного пути не далее 50 м В противном случае его значение принимают для местности, лежащей с наветренной стороны станционных настроек

4. В случаях, когда местность не подходит под приведенную выше классификацию, можно принимать промежуточное значение параметра шероховатости.

5. Для участков контактной сети, проходящих по берегу озера, водоема, моря, если с другой его стороны расположена отвесная стена гор, параметр шероховатости следует принимать по п. 2.

Высоту расположения проводов контактной сети над подстилающей поверхностью для участков железной дороги с различным профилем следует определять в соответствии со схемами рис. 2.

Для участков, расположенных в выемке глубиной 7 м и более, высоту z над подстилающей поверхностью следует принимать равной 3 м.

6. При расположении железнодорожной насыпи на местности с параметром шероховатости 0,5 и 1 м высота расположения проводов контактной сети уменьшается на высоту препятствия, т. е. становится равной (z – 10) м. При этом значение параметра шероховатости подстилающей поверхности принимают равным 0,15 м по п. 5 и 0,2 м – п. 6.

Рис. 1. Параметр шероховатости подстилающей поверхности zо, м. Коэффициент изменения ветрового давления:

I - насыпь высотой 40 м (zм на рис. 2); II - нулевое место; III - выемка глубиной 5 м (zв на рис. 2)

Рис. 2. Схемы расположения проводов контактной сети над подстилающей поверхностью

2.12. Нормативное значение средней составляющей ветровой нагрузки Qсн Н на опорные, поддерживающие и фиксирующие устройства контактной сети определяют по формуле:

Qсн = qнзСхFк,                                                                            (3)

где Сх - аэродинамический коэффициент, принимаемый по п. 2 18 настоящих Норм и по обязательному приложению 4 СНиП 201.07-85 по нагрузкам и воздействиям; Fк - площадь конструкции или ее части по наружному габариту, перпендикулярная направлению ветрового потока, м2.

2.13. Нормативное значение пульсационной составляющей ветровой нагрузки на опорные, поддерживающие и фиксирующие устройства Qпн Н определяют по формуле:

Qпн = 0,73×Qсн×vп×mп,                                                               (4)

где vп×- коэффициент пространственной корреляции пульсации давления ветра, принимаемый по табл. 3; mп - коэффициент пульсаций давления ветра, принимаемый по рис. 3.

2.14. Нормативное значение средней составляющей ветровой нагрузки Qсн×Н на провода и передаваемой с проводов на опорные, поддерживающие и фиксирующие устройства определяют по формуле:

Qсн×= aнqнвСхFк,                                                                     (5)

где aн - коэффициент, учитывающий неравномерность давлений ветра вдоль пролета, принимаемый равным: при давлении ветра до 400 Па - 0,9; 401-650-0,8; 651-1000-0,7; более 1001 Па - 0,65; при механическом расчете проводов и длин пролетов aн = 1.

Рис. 3. Коэффициент пульсаций давления ветра

2.15. При наличии многолетних (не менее 20 лет) данных местных гидрометеостанций о скоростях ветра допускается определять нормативное ветровое давление по выражению:

qo = 0,0615v2о,

где vо - скорость ветра на уровне 10 м над поверхностью земли, соответствующая десятиминутному интервалу осреднения и превышаемая в среднем в 10 лет, м/с

2.16. Нормативное значение пульсационной составляющей ветровой нагрузки, передаваемой с проводов на опорные, поддерживающие и фиксирующие устройства Qпн H, находят по формуле:

Qпн = 0,73×Qсн×vп×mп×xп,                                                              (6)

где xп - коэффициент динамичности, принимаемый по рис. 4 в зависимости от веса провода (проводов) (при гололеде вместе с весом отложения).

Таблица 3

Линейный размер конструкций. Длина пролета

2

5

10

15

20

25

35

45

55

65

70

75

vп

0,89

0,87

0,85

0,82

0,80

0,77

0,75

0,72

0,67

0,62

0,58

0,54

Рис. 4. Коэффициент динамичности для проводов контактной сети

2.17. При расчете ветровой нагрузки, передаваемой с проводов на опорные, поддерживающие и фиксирующие устройства контактной сети, следует принимать следующие коэффициенты надежности по ветровой нагрузке:

а) при расчете по прочности - 1,3;

б) при расчете по деформациям - 1,0;

в) при расчете по образованию трещин в железобетонных опорах - 0,75.

Расчетное значение ветровой нагрузки на опорные, поддерживающие и фиксирующие устройства следует определять как произведение нормативного значения на коэффициент надежности по ветровой нагрузке 1,2.

Механический расчет проводов выполняют на нормативное значение средней составляющей ветровой нагрузки, принимая нормативное ветровое давление qo (п. 2.11), умноженное на коэффициент 1,10.

2.18. При определении ветровой нагрузки на провода и конструкции контактной сети значения аэродинамического коэффициента лобового сопротивления Сх принимать следующие:

а) одиночные провода и тросы диаметром 20 мм и более - 1,10;

б) то же диаметром менее 20 мм и также на провода и тросы, покрытые гололедом - 1,20;

в) одиночные контактные провода и тросы цепной подвески с учетом зажимов и струн - 1,25;

г) двойные контактные провода с расстоянием между ними 40 мм на нулевых местах и на насыпях высотой до 5 м от сопротивления единичного провода - 1,55, то же на насыпях более 5 м - 1,85;

д) железобетонные опоры кольцевого и круглого сечения - 0,7;

е) ригели жестких поперечин по пп. 2.19-2.22 данных Норм;

ж) плоские элементы конструкций - 1,4.

2.19. Расчет ветровых .нагрузок на ригели жестких поперечин следует выполнять в соответствии с рекомендациями СНиП 2.01.07-85 по нагрузкам и воздействиям и дополнительными рекомендациями пп. 2.20-2.22 настоящих Норм.

2.20. Ветровые нагрузки на ригели жестких поперечин необходимо определять для отсека фермы и приводить затем к нагрузке на 1 м.

За отсек принята часть фермы, заключенная между двумя поперечными сечениями на длине панели и характеризующаяся схемой решетки и геометрическими параметрами, которые повторяются по длине фермы (рис. 5).

2.21. Горизонтальную расчетную нагрузку на отсек ригеля х1 Н определяют при действии ветра вдоль пути:

,

где nв - коэффициент надежности по ветровой нагрузке, принимаемый равным 1,2;  - характерная площадь с наветренной стороны отсека фермы (м2), определяемая для четырехгранных ферм по формуле:

 = Sп + Sпв + nркSрк + nрпSрп + nркгSркгcos3gc + 0,5nрксSрксcos3gc,

где Sп, Sпв, Sрк, Spп, Spкг, Spкc - характерные площади стержней отсека, соответственно нижнего и верхнего поясов, раскосов, распорки, раскоса горизонтальной грани, раскоса в поперечном сечении, м2, определяемые по формулам (7).

Sп = dпlо; Sпв = dвlо;

; ;

; ;

,                                                              (7)

где dн, dв - ширина полки нижнего и верхнего пояса, м; lo - длина отсека, м; dрк, оп, ркг, ркс - ширина полки стержней решетки, м; gр - угол между поясом и раскосом в поперечном сечении, град; nрк, nрп - число раскосов, распорок на одной вертикальной грани отсека; nркг - число раскосов на одной горизонтальной грани отсека; nркс - число раскосов в поперечных сечениях четырехгранного отсека; gr, gc - углы отклонения от вертикали раскосов, расположенных на горизонтальной грани отсека и в поперечном сечении отсека четырехгранной фермы.

Аэродинамический коэффициент Сх1 определяют по табл. 4.

Таблица 4

 

Отношение

 

1,0

1,6

2,0

Отношение

Отношение

 

1,0

1,5

1,0

1,5

1,0

1,5

0,05

2,55

2,59

2,66

2,70

2,77

2,81

0,10

2,05

2,10

2,20

2,25

2,35

2,40

0,20

1,68

1,73

1,89

1,94

2,10

2,15

2.22. Суммарную горизонтальную расчетную ветровую нагрузку на ферму ригеля и несущие тросы цепной подвески, направленную перпендикулярно оси пути, z1 H, определяют по формуле (8):

,                                                  (8)

где  - характерная площадь фермы, равная сумме характерных площадей отсеков, м2; (lф - длина фермы, м; Сz1 = 0,3Сх1; Qpi - ветровая нагрузка на i - провод H, определяемая по указаниям пп. 2.12-2.17.

Ветровая нагрузка на ферму ригеля поперечины в направлении, перпендикулярном оси пути, может быть принята равной 30 % от ветровой нагрузки на ферму вдоль оси пути.

Рис. 5. Схема отсека фермы

Наибольшая величина суммарной ветровой нагрузки имеет место при угле скольжения b = 15° (рис. 6).

В последней формуле аэродинамический коэффициент лобового сопротивления несущих тросов (контактных проводов) при угле скольжения b = 15° определяют по формуле:

Сxi = Cx1 × cos2b1 = Cx1×0,932,

где Cxi - аэродинамические коэффициенты лобового сопротивления несущих тросов (контактных проводов) при их поперечном обтекании.

2.23. Максимальное значение ветровой нагрузки следует определять при температуре воздуха минус 5 °С.

Гололедные нагрузки

2.24. Гололедную нагрузку на контактную сеть следует рассчитывать в соответствии с указаниями главы СНиП по нагрузкам и воздействиям и дополнительными требованиями данных Норм.

2.25. Нормативное значение гололедной нагрузки на проводах и тросах, подвешенных на опорах контактной сети, Qгн Н находят по формуле:

Qгн = qгнl,                                                                           (9)

где qгн - нормативное значение линейной гололедной нагрузки Н/м, определяемой, исходя из толщины стенки гололеда, приведенного к цилиндрической форме с плотностью g = 0,9 г/см3.

2.26. Нормативную толщину стенки гололеда bн повторяемостью один раз в 10 лет, приведенную к высоте 10 м над поверхностью земли и диаметру провода 10 мм, следует принимать для различных географических районов по табл. 5. Для малоизученных районов толщину стенки гололеда принимать на район выше. Изменение толщины стенки гололеда в зависимости от диаметра провода следует учитывать по указаниям главы СНиП «Нагрузки и воздействия».

2.27. Местные условия образования гололедно-изморозевого отложения учитывают поправочным коэффициентом Кb к толщине стенки отложения по данным табл. 6.

Рис. 6. Схема положения подвески относительно ригеля

Таблица 5

Гололедные районы СССР (принимаются по СНиП 2.01.07-85)

I

II

III

IV

V

Толщина стенки гололеда, мм

5

10

15

20

25

Таблица 6

№ пп

Вид поверхности

Поправочный коэффициент, Kb

1

Насыпь высотой, м

 

 

5

1,1

 

10

1,20

 

15

1,30

 

20

1,40

 

25

1,45

 

30 и более

1,50

2

Выемка глубиной, м

 

 

5

0,75

 

7 и более

0,60

3

Незащищенная от ветра, открытая, ровная поверхность

1,1

4

Лес, здания, станционные постройки с высотой более высоты расположения проводов

0,8

2.28. С целью учета особенностей гололедообразования на проводах контактной подвески необходимо:

а) при определении веса гололеда на контактных проводах толщину стенки гололеда принимать равной 50 % толщины стенки, принятой для данного района;

б) при определении веса гололеда на несущем тросе вводить поправочный коэффициент к весу отложения, равный 0,8.

2.29. Нагрузку от гололеда на струнах Рг Н/м, отнесенную к длине пролета, следует определять по выражению:

при одном контактном проводе:

Рг = g×p×0,13bн×(1,15bн + dс)10-3;                                           (10)

при двух контактных проводах и шахматном расположении струн:

Рг = g×p×0,2bн×(1,15bн + dс)10-3;                                                 (11)

где bн - нормативная толщина стенки гололеда; dc - диаметр струны, мм; g - плотность гололеда g = 0,9 г/см3.

2.30. При различных углах встречи гололедонесущего потока с проводами необходимо принимать следующие значения массы гололеда, %:

при угле встречи 90° (перпендикулярно оси пути)     100

при 0° (вдоль оси пути)                                                    30

Примечания: 1. Указания п. 2.30 необходимо учитывать при расчете жестких поперечин на наиболее невыгодные сочетания ветровых и гололедных нагрузок.

2. Гололедные нагрузки для промежуточных значений угла допускается определять линейной интерполяцией между указанными значениями.

2.31. При расчете конструкций контактной сети необходимо принимать следующие значения коэффициентов надежности по нагрузке к гололедной нагрузке:

а) при расчете по прочности:

для проводов в I, II, III гололедных районах - 1,3; в IV, V - 1,4;

для гололедных отложений на конструкциях опорных, поддерживающих и фиксирующих устройств - 1,3;

для проводов, на которых проектом предусмотрена плавка гололеда @ 1;

б) при расчете по деформациям: в I, II, III районах - 0,5; в IV, V - 0,7;

в) при расчете по образованию трещин в железобетонных опорах - 0,3.

2.32. Нормативное значение ветрового давления, Па (скорость ветра, м/с) при гололеде принимать по табл. 7.

Таблица 7

Гололедные районы СССР

I

II

III

IV

V

qо, Па

92

100

117

167

192

vo, м/с

12

13

14

17

18

2.33. Местные условия защищенности контактной сети при определении давления ветра в заданных условиях при гололеде следует учитывать в соответствии с указаниями п. 2.11.

Значения средней и пульсационной составляющих нормативной ветровой нагрузки при гололеде определяют по указаниям пп. 2.12-2.16.

Ветровую нагрузку на контактные провода следует определять с учетом указаний п. 2.28.

2.34. Расчет проводов и длин пролетов следует выполнять на нормативное значение средней составляющей ветровой нагрузки при гололеде, умноженной на коэффициент 1,10.

2.35. При расчете ветровой нагрузки, передаваемой с проводов, покрытых гололедом, на опорные, поддерживающие и фиксирующие устройства, необходимо принимать следующие коэффициенты надежности по нагрузке:

а) при расчете по прочности - 1,3;

б) при расчете по деформациям - 0,85;

в) при расчете по образованию трещин в железобетонных опорах - в I, II гололедных районах - 0,55; III, IV, V - 0,45.

2.36. Гололедную нагрузку следует находить при температуре, определяемой согласно указаниям главы СНиП по нагрузкам и воздействиям.

2.37. Гололедную нагрузку на ферму жесткой поперечины определяют для отсека фермы и приводят затем к нагрузке на 1 м ее длины.

Расчетную гололедную нагрузку qгфр Н/м определяют по формуле:

,                                                              (12)

где nГ - коэффициент перегрузки для гололедной нагрузки на ферму, принимаемый согласно требованиям главы СНиП по нагрузкам и воздействиям; So - поверхность отсека, подверженная обледенению, м2.

So = 0,65 S.

Здесь S - полная поверхность отсека фермы, м2;

S = S¢пnп + S¢пвnпв + S¢ркnрк + S¢рпnрп + S¢ркгnркг + S¢рпгnрпг + S¢рксnркс;

S¢п, S¢пв, S¢рк, S¢рп, S¢ркг, S¢рпг, S¢ркс - общая поверхность нижнего пояса (п), верхнего пояса (пв), раскоса (рк), распорки (рп), раскоса горизонтальной грани (ркг), распорки горизонтальной грани (рпг), раскосов в поперечном сечении фермы (ркс).

Sп = 4dlo; S¢пв = 4dвlo;

;

;

;

;

;

вф - высота фермы, аф - ширина фермы, dcp - определяют по формуле (7), nп; nпв; nрк; nрп; nркг; nрпг; nркс - число поясов нижних, верхних, раскосов и распорок на вертикальных гранях, раскосов и распорок на горизонтальных гранях, а также раскосов в поперечных сечениях отсека фермы (соответственно).

Температурные воздействия

2.38. Расчет натяжения некомпенсированных проводов и передаваемых ими усилий на конструкции следует производить на основании данных об изменениях температуры в районе электрифицируемого участка в соответствии с требованиями главы СНиП по строительной климатологии и геофизике, а при отсутствии необходимых материалов в этих Нормах - по данным ближайших метеостанций.

2.39. Нормативное значение минимальной температуры воздуха (°С),определяют по формуле:

tнmin = t1 D1 - 6,

где t1 - многолетняя средняя месячная температура воздуха в январе, принимаемая по карте 5 обязательного приложения 5 главы СНиП по нагрузкам и воздействиям или по СНиП строительной климатологии и геофизики; D1 - отклонение средней суточной температуры от средней месячной (t1), принимаемой главой СНиП по нагрузкам и воздействиям.

При наличии многолетних (не менее 20 лет) данных местных метеостанций допускается определять нормативное значение температуры воздуха по формуле:

,

где  - средняя суточная температура наиболее холодных суток в январе; tmin - абсолютная минимальная температура воздуха.

2.40. Расчетное значение минимальной температуры воздуха равно абсолютной минимальной температуре.

2.41. При определении нагрузок, передаваемых на конструкции контактной сети от натяжения некомпенсированных проводов при температурных воздействиях, необходимо принимать следующие значения коэффициентов к величине натяжения:

Для некомпенсированного       Для одиночных проводов

несущего троса                  (усиливающих, питающих)

При расчете по:

прочности                                        1,1                                                1,2

деформациям                                   1,0                                                1,0

образованию трещин в

железобетонных опорах                0,9                                                0,8

2.42. Нормативное и расчетное значения максимальной температуры воздуха следует принимать равными абсолютной максимальной температуре воздуха tmax с учетом воздействия солнечной радиации (прямой и рассеянной).

Эквивалентное увеличение максимальной температуры воздуха в результате нагрева проводов солнечной радиацией определяют по выражению:

tр = 0,0162jmax,

jmax - максимальное значение суммарной солнечной радиации в Вт/м2, принимаемое по табл. 5 СНиП 2.01.01-82 по строительной климатологии м геофизике.

Для районов, расположенных между 46 и 56 градусами с. ш., температуру нагрева проводов солнечной радиацией tр можно принять равной 14 °С.

2.43. При определении длины анкерных участков цепных подвесок изменение температуры воздуха следует определять как среднее между среднегодовым и нормативным значениями.

2.44. Температуру беспровесного положения контактного провода следует определять по выражению:

tо =  - t',

где  - среднегодовая температура воздуха, определяемая по СНиП «Строительная климатология и геофизика»; t' - поправка, равная 20-25° при одном и 15-20° при двух контактных проводах.

Более точно температуру беспровесного положения контактного провода можно определить, исходя из следующих соотношений:

если значения  £  (после округления до 5 °С), то равно 20 при одном, 15° при двух контактных проводах;

если  > , то t¢ соответственно равно 25 и 20 °С.

Здесь tн - средняя нормативная температура воздуха.

.

Монтажные нагрузки

2.45. Конструкции контактной сети (опоры, консоли, жесткие поперечины, кронштейны фиксаторов) следует проверять расчетом на действие монтажных нагрузок, возникающих при погрузке, разгрузке и перевозке, выполняемых в соответствии с требованиями «Инструкции по производству и приемке строительных и монтажных работ при электрификации железных дорог», ВСН 12-82, а также при монтаже как самих конструкций, так и располагаемых на них элементов контактной сети (проводов и др.).

2.46. При расчете конструкций на воздействие нагрузок, возникающих при погрузочно-разгрузочных работах и перевозке, должны быть рассмотрены схемы строповки и погрузки, вызывающие наибольшие усилия в конструктивных элементах.

Если возникающие при этом монтажные нагрузки приводят к необходимости увеличения сечений конструкции, то в проекте должны быть предусмотрены более рациональные схемы строповки и погрузки, по которым и определяют затем значения монтажных нагрузок.

Монтажные нагрузки при погрузке, разгрузке и перевозке конструкций следует определять с учетом коэффициентов; обусловленных динамическим воздействием:

при подъеме кранами                  1,25

при перевозке транспортом        1,6

При проектировании типовых конструкций следует принимать коэффициент надежности по монтажной нагрузке равным 1,6.

2.47. Опоры и жесткие поперечины, перевозимые или складируемые в несколько рядов, нужно проверять расчетом на действие нагрузок от массы вышележащих конструкций на нижний ряд.

2.48. Опорные и поддерживающие конструкции необходимо проверять на нагрузки, возникающие при монтаже цепных подвесок и одиночных проводов, подвешиваемых со стороны поля. При этом полученные усилия необходимо умножать на коэффициент КД = 1,25, учитывающий динамическое воздействие нагрузки. Если методы монтажа отличаются от приведенных в ВСН 12-82, то величины этих нагрузок следует определять в зависимости от методов монтажа. Если намечаемый метод монтажа создает нагрузки, недопустимые для типовых конструкций, то должны быть внесены изменения в метод монтажа или в конструкцию.

2.49. Горизонтальные и наклонные элементы решетки металлических опор и жестких поперечин при угле наклона 30° и менее, а также консоли и кронштейны фиксаторов проверяют расчетом на силу от массы монтера, равный 1000 Н.

2.50. Анкерные опоры и их оттяжки следует рассчитывать на усилия вдоль пути от анкеруемых проводов. При этом для определения расчетной нагрузки величину нормативного натяжения в проводах в основных сочетаниях следует увеличивать на 15 %.

Нагрузки от обрыва проводов

2.51. Определение нагрузок аварийного режима на консольные опоры контактной сети следует производить для случая обрыва несущего троса цепных контактных подвесок, дающего наиболее невыгодные сочетания и наибольшие величины действующих на конструкцию сил; эти силы превышают нагрузки, возникающие при обрыве контактных или усиливающих проводов.

Нагрузки при обрыве проводов на опорах питающих линий определяют, исходя из условий обрыва одного из проводов, подвешенных на опоре, дающего наибольший изгибающий или крутящий момент на опору. Продольная (вдоль линии) сила, приложенная в точке крепления провода при его обрыве, принимается равной 0,5 наибольшего натяжения провода, подвешенного на металлической опоре, и 0,3 наибольшего натяжения провода при его подвеске на железобетонной опоре. Нагрузки на концевые, угловые и анкерные опоры при обрыве проводов питающих и отсасывающих линий определяют по Правилам устройства электроустановок (ПУЭ). При этом нагрузки определяют из условий обрыва проводов одной линии, дающих наибольший изгибающий или крутящий момент на опору. За линию принимаются провода, закрепленные на одной натяжной гирлянде.

2.52. Расчетную схему для определений усилий, действующих на консольные опоры контактной сети при обрыве проводов цепной подвески, следует принимать по рис. 7.

Рис. 7. Схема действия сил на опору при обрыве несущего троса

На конце консоли приложена вертикальная нагрузка QД Н,

QД = КДQс,                                                                    (14)

где КД = 1,9 - динамический коэффициент; Qc - вес цепной контактной подвески, зависящий от типа применяемых проводов и длины пролета, Н.

Консоль (рис. 8) развернута на угол bк к линии, перпендикулярной оси пути таким образом, что точка закрепления троса передвинута вдоль пути на величину hп, равную конструктивной высоте цепной контактной подвески. Угол bк определяют из условия

.

Рис. 8. Расположение консоли (в плане) при действии максимальных сил, возникающих при обрыве проводов

Изгибающий момент МД создается вертикальной силой, приложенной на конце консоли

МД = аДQД + а1Qк + аТQн,                                                          (15)

где аТ - расстояние от оси опоры до точки крепления несущего троса, м; а1 - расстояние от оси опоры до центра тяжести консоли, м; Qк - вес консоли, Н; Qн - вес изолятора, Н.

Очертание эпюры изгибающих моментов соответствует приведенному на рис. 7. Работа опоры, имеющей разные значения моментов инерции сечения вдоль оси пути и перпендикулярно к ней, соответствует косому изгибу.

Составляющие изгибающего момента вдоль оси пути Ме и перпендикулярно к оси пути Мп нужно вычислять по формулам:

Mе = MДsinbк;                                                                     (16)

Мп = MДсosbк,                                                                   (17)

где МД - изгибающий момент в плоскости действия равнодействующей силы.

2.53. Нагрузку на конструкции контактной сети от обрыва несущего троса определяют для заданного типа контактной подвески, района по гололеду и длин пролетов. Для определения вертикальных сил, действующих при обрыве, следует принимать толщину стенки гололеда, равную 0,5 максимальной.

2.54. Расчет нагрузок на ригель жесткой поперечины в аварийном режиме следует выполнять для случая обрыва несущего троса в середине пролета контактной подвески одного из главных путей, дающего наиболее невыгодные сочетания и наибольшие величины действующих сил.

При расчете в аварийном режиме продольной нагрузки в опорных узлах поперечины следует рассматривать ту контактную подвеску, обрыв несущего троса которой даст максимальное значение продольной нагрузки.

Вертикальную нагрузку, действующую при обрыве проводов на жесткую поперечину, следует определять по формуле (14).

При расчете жесткой поперечины на вертикальную нагрузку от обрыва проводов действие продольной силы не учитывают.

При подвешивании контактной подвески на консольных стойках место приложения вертикальной нагрузки следует определять с учетом поворота консоли на угол bк (см. п. 2.52).

2.55. Нагрузку вдоль оси пути на анкерные опоры при обрыве проводов следует определять по максимальной величине их натяжения с учетом коэффициента 1,15, обусловленного динамическим воздействием нагрузки при обрыве контактного провода или несущего троса.

2.56. Усилие вдоль пути, действующее при обрыве проводов компенсированной контактной подвески на анкерную опору средней анкеровки, нужно определять как сумму, состоящую из максимального натяжения в дополнительном тросе и 40 % натяжения в несущем тросе.

2.57. Продольную нагрузку на жесткие поперечины Рож, Н от обрыва несущего троса следует принимать в зависимости от веса контактной подвески с учетом гололедного отложения на проводах Qп Н, величины натяжения троса Т и длины узла подвешивания троса на ригеле l по выражению:

Рож = Р¢ожКТКl,                                                              (18)

где

Р¢ож = 0,3 + 0,4Qп;                                                            (19)

КТ - коэффициент, учитывающий величину натяжения Т несущего троса (рис. 9); Кl - коэффициент, учитывающий длину узла подвешивания l, несущего троса на ригеле жесткой поперечины (рис. 10).

При подвешивании контактной подвески на консольных стойках и несущего троса компенсированной подвески на роликах расчет жесткой поперечины в аварийном режиме на продольную нагрузку не производят.

Рис. 9. Коэффициент, учитывающий величину натяжения несущего троса

Рис. 10. Коэффициент, учитывающий длину узла подвешивания несущего троса на ригеле жесткой поперечины

2.58. При расчете жесткой поперечины на продольную нагрузку от обрыва несущего троса вертикальная составляющая нагрузки Qп принимается равной весу подвески с учетом гололедного отложения на проводах.

2.59. Реакция необорванных несущих тросов контактных подвесок соседних путей включает статическую и динамическую составляющие. Статическую составляющую реакции тросов следует определять по пп. 5.53-5.57 Норм.

Суммарная величина реакции тросов равна значению статической составляющей, умноженному на коэффициент динамичности, равный 1,5.

2.60. При проектировании типовых конструкций контактной сети нагрузки от обрыва проводов следует принимать для наиболее тяжелых расчетных условий; максимальной длины пролета, наиболее тяжелого типа контактной подвески и наибольшего веса отложения на проводах.

Рекомендуемые при типовом проектировании величины нагрузок приведены в табл. 8 и 9.

Примечания. 1. В таблицах приведена максимальная возможная в заданном ветровом районе унифицированная длина пролета, при которой определено усилие от обрыва.

2. Максимальная длина пролета определена при значении параметра шероховатости подстилающей поверхности, равном 0,5м.

3. Натяжение несущих тросов равно 20 кН.

2.61. Расчет консольных опор контактной сети на особые сочетания нагрузок, появляющихся в результате обрыва проводов, следует производить только по первому предельному состоянию (по несущей способности).

2.62. Расчетное сопротивление стали для расчета конструкции контактной сети по несущей способности на нагрузки от обрыва проводов следует принимать: при учете гололеда - равным нормативному, а без гололедных отложений – 95 % от нормативного. При расчете железобетонных опор расчетное сопротивление стали может быть повышено на 10 %, а бетона - на 25 %.

2.63. При проектировании консолей необходимо производить проверочный расчет на нагрузки от обрыва проводов. Вертикальную силу, приложенную на конце консоли, следует определять в соответствии с п. 2.52 настоящих Норм.

2.64. Кронштейны фиксаторов для случая обрыва проводов следует рассчитывать на вертикальную нагрузку приложенную в точке крепления фиксатора и равную массе контактных проводов на длине максимального пролета.


Таблица 8

 

 

Изгибающие моменты, кНм (М/Мп)

 

 

Тип контактной подвески

Расчетные условия

Габарит

М-120 + 2МФ-100

ПБСМ-95 + 1МФ-100

 

опор, м

Ветровой район СССР (длина пролета, м)

 

 

I-V (76)

VI (72)

VII (68)

I-V (72)

VI (64)

VII (60)

Без учета веса

3,1

10,3/11,26

9,81/10,72

9,31/10,18

6,07/6,64

5,50/6,01

5,22/5,70

гололеда

3,3

10,32/12,46

9,83/11,86

9,33/11,27

6,09/7,35

5,51/6,66

5,23/6,31

 

3,5

10,29/13,72

9,80/13,06

9,31/12,41

6,07/8,09

5,50/7,33

5,21/6,95

 

5,0

10,46/22,46

9,97/21,40

9,48/20,35

6,26/13,44

5,69/12,22

5,41/11,61

 

5,7

10,71/26,89

10,22/25,66

9,73/24,44

6,52/16,38

5,96/14,96

5,67/14,25

С учетом веса гололеда при толщине стенки отложения, мм:

 

 

 

 

 

 

 

5

3,1

10,91/11,93

10,38/11,35

9,86/10,78

6,48/7,08

5,86/6,41

5,55/6,07

 

3,3

10,94/13,20

10,41/12,57

9,88/11,93

6,49/7,84

5,88/7,09

5,57/6,72

 

3,5

10,90/14,54

10,38/13,84

9,85/13,14

6,47/8.63

5,86/7,81

5,55/7,40

 

5,0

11,07/23,76

10,55/22,64

10,02/21,52

6,66/14,30

6,05/12,99

5,74/12,33

 

5,7

11,32/28,41

10,80/27,11

10,28/25,80

6,92/17,39

6,31/15,85

6,01/15,09

10

3,1

11,69/12,78

11,12/12,16

10,56/11,54

7,01/7,66

6,33/6,92

5,99/6,55

 

3,3

11,72/14,14

11,15/13,46

10,58/12,77

7,02/8,48

6,35/7,66

6,01/7,25

 

3,5

11,68/15,57

11,11./14,82

10,55/14,07

7,00/9,33

6,33/8,44

5,99/7,99

 

5,0

11,84/25,42

11,28/24,22

10,72/23,01

7,19/15,43

6,52/13,99

6,18/13,27

 

5,7

12,09/30,35

11,53/28,94

10,97/27,53

7,45/18,70

6,78/17,02

6,45/16,19

15

3,1

12,63/13,81

12,02/13,14

11,40/12,47

7,66/8,37

6,91/7,56

6,54/7,15

 

3,3

12,66/15,29

12,04/14,54

11,43/13,80

7,68/9,27

6,93/8,36

6,55/7,91

 

3,5

12,62/16,83

12,01/16,01

11,39/15,19

7,65/10,20

6,91/9,21

6,53/8,71

 

5,0

12,78/27,44

12,17/26,12

11,56/24,81

7,84/16,82

7,09/15,23

6,72/14,43

 

5,7

13,02/32,70

12,41./31,17

11,80/29,64

0,09/20,32

7,35/18,47

6,99/17,54

20

3,1

13,74/15,03

13,07/14,29

12,40/13.55

8,43/9,22

7,60/8,31

7,19/7,86

 

3,3

13,78/16,63

13,10/15,81

12,42/15,00

8,45/10,21

7,62/9,20

7,20/8,69

 

3,5

13,73/18,31

13,06/17,41

12,39/16,52

8,43/11,24

7,60/10,13

7,18/9,57

 

5,0

13,88/29,81

13,21/28,37

12,54/26,93

8,61/18,48

7,78/16,70

7,37/15,81

 

5,7

14,12/35,46

13,46/33,78

12,79/32,11

8,86/22,26

8,04/20,18

7,63/19,15

25

3,1

15,02/16,42

14,28/15,61

13,54/14,80

9,33/10,21

8,40/9,19

7,94/8,68

 

3,3

15,06/18,18

14,31/17,28

13,57/16,38

9,36/11,29

8,42/10,17

7,95/9,60

 

3,5

15,01/20,01

14,27/19,03

13,53/18,04

9,33/12,44

8,40/11,19

7,93/10,57

 

5,0

15,15/32,54

14,42/30,95

13,68/29,37

9,50/20,40

9,57/18.41

8,11/17,41

 

5,7

15,39/38,64

14,65/36,80

13,92/34,95

9,76/24,49

8,83/22/17

8,37/21,01


Таблица 9

Продольная нагрузка, кН, при контактной подвеске типа

Расчетные условия

М-120 + 2МФ-100

ПБСМ 93 + МФ-100

 

Район по скоростному напору ветра (длина пролета, м)

 

I-V (76)

VI (72)

VII (68)

I-V (72)

VI (64)

VII (60)

Без учета гололеда

1,79

1,72

1,65

1.18

1,10

1,06

С учетом гололеда при тол­щине стенки отложения, мм:

 

 

 

 

 

 

5

1,99

1,90

1,82

1,31

1,22

1,17

10

2,28

2,18

2,09

1,52

1,40

1,34

15

2,67

2,55

2,44

1,79

1,64

1,57

20

3,16

3,01

2,87

2,14

1,95

1,86

25

3,74

3,56

3,39

2,56

2,32

2,21

Сейсмические воздействия

2.65. В районах с сейсмичностью 8-9 баллов фундаменты, опоры и соединенные с ними жестким (не шарнирным) узлом жесткие поперечины или другие конструктивные элементы контактной сети следует рассчитывать с учетом сейсмических воздействий, принимаемых в соответствии с указаниями главы СНиП по проектированию и строительству в сейсмических районах (П-7-81) и настоящих Норм. Конструкции, имеющие шарнирное соединение с опорой (консоли, фиксаторы), рассчитывают без учета сейсмических воздействий.

2.66. Расчеты ВЛ электропередачи и контактной сети на сейсмические воздействия необходимо осуществлять для двух расчетных режимов:

а) распространение сейсмических волн перпендикулярно направлению контактной сети или ВЛ; в этом расчетном режиме следует делать проверку опор контактной сети по прочности и по деформациям, а опор ВЛ - по деформациям и прочности с учетом дополнительного момента от влияния массы проводов, получающегося в результате наклона опор; инерционные силы от массы проводов в этом расчетном режиме не учитывают;

б) направление сейсмических волн совпадает с направлением ВЛ электропередачи или контактной сети; в этом случае необходимо определять деформации опор на уровне подвешивания проводов, затем по разности деформаций опор определить изменение натяжения проводов за счет изменения длины пролета некомпенсированных проводов (начиная от анкерной опоры) и по величине изменения натяжения проводов определять продольную силу, действующую в точке крепления проводов к изоляторам, после этого делать проверку прочности штыревых изоляторов и опор.

Для проводов контактной сети как на перегонах, так и на станциях в районах с сейсмичностью 8-9 баллов рекомендуется компенсированная анкеровка, снижающая сейсмические воздействия на изоляторы и опоры при их направлении вдоль пути; не рекомендуется применение штыревых и опорных изоляторов.

2.67. Для снижения усилий от сейсмических воздействий на кронштейны и опоры вдоль пути от некомпенсированных проводов необходимо предусматривать специальные конструктивные мероприятия.

2.68. В расчетах на сейсмостойкость опору контактной сети или ВЛ электропередачи следует считать как систему с п степенями свободы с массой, сосредоточенной в п точках, соответствующих центрам масс элементов, на которые разделена опора, причем стопки длиной до 15,6 м следует рассчитывать при п = 5, при расчете стоек длиной до 21 м принимать п = 7, а длиной более 21 м - п = 10.

Расчетные изгибающие моменты от действия сейсмических сил для системы с п степенями свободы следует определять не менее, чем для трех форм колебаний.

Расчетные сопротивления стали и бетона при расчете конструкций на сейсмические воздействия принимать в соответствии с п. 2.62 данных Норм.

2.69. Для опор контактной сети, ВЛ электропередачи коэффициент динамичности bl = 1/Тl при определении сейсмических сил следует увеличивать согласно действующим Нормам в 1,5 раза и принимать равным bi =1,5/Тi, где Тi - период собственных колебаний опоры.

Методика расчета опорных конструкции контактной сети на сейсмические воздействия приведена в приложении 5.

Сочетания нагрузок

2.70. Сочетание нагрузок для расчета конструкций контактной сети принимают в соответствии с пп. 2.1-2.5 настоящих Норм.

2.71. Нагрузки при различных сочетаниях нужно умножать на коэффициенты сочетаний, приведенные в табл. 10.

Таблица 10

№ пп

Наименование нагрузок и воздействий

Коэффициент сочетаний

1

Усилия от дополнительного натяжения или изменения направления некомпенсированных проводов, обусловленные температурными воздействиями при максимальном ветре

0,8

2

Ветровые нагрузки на провода, покрытые гололедом

Согласно п. 2.32 настоящих Норм

3

Температурные воздействия при гололеде

Согласно п. 2.36

2.72. При расчете конструкций контактной сети на основные сочетания, включающие одну кратковременную нагрузку, величину последней следует учитывать без снижения, а при расчете на те же сочетания, но при двух и более кратковременных нагрузках, расчетные величины этих нагрузок (или соответствующих им усилий в конструкциях) следует умножать на коэффициент сочетаний 0,9.

При расчете конструкции контактной сети на особые сочетания расчетные величины кратковременных нагрузок (или соответствующих им усилий в конструкциях) следует умножать на коэффициент сочетаний 0,8, кроме случаев, оговоренных в нормах проектирования зданий и сооружений в сейсмических районах.

2.73. При учете сочетаний нагрузок за одну кратковременную нагрузку следует принимать:

ветровую нагрузку и температурные воздействия в соответствии с п. 2.23;

гололедно-ветровую нагрузку и температурные воздействия в соответствии с пп. 2.32, 2.36.

3. ПРОЕКТИРОВАНИЕ КОНТАКТНЫХ ПОДВЕСОК И ВОЗДУШНЫХ ЛИНИЙ

3.1. При определении наибольшего допускаемого по прочности натяжения проводов и тросов следует учитывать статистические характерные прочности проводов и действующих в данном районе климатических нагрузок, срок службы проводов, снижение их прочности в эксплуатации, динамические нагрузки, возникающие при колебании проводов, возможное отклонение натяжения провода при его монтаже.

3.2. Напряжения в проводе за весь срок службы его не должны превышать величины предела упругости материала провода.

3.3. Максимальное натяжение проводов воздушных линий и несущих тросов полукомпенсированных цепных контактных подвесок может быть достигнуто в одном из следующих расчетных режимов:

минимальная температура воздуха при отсутствии добавочных нагрузок;

наибольшая гололедная нагрузка при одновременном воздействии давления ветра;

наибольшая ветровая нагрузка.

3.4. Наибольшее допускаемое по прочности значение натяжения проводов воздушных линий и несущих тросов контактных подвесок определяют в зависимости от расчетного режима и марки провода по выражению

Ндоп = R/Кз, (20)

где R - величина разрушающей нагрузки при растяжении проводов, принимаемая по государственным стандартам или заводским сертификатам; Кз - коэффициент запаса прочности, принимаемый по табл. 11.

Таблица 11

Расчетный режим

Гололедный район СССР

Коэффициент запаса прочности несущих тросов полукомпенсированных контактных подвесок и проводов воздушных линий (марок)

 

 

сталемедный (ПБСМ)

сталеалю­миниевый (ПБСА)

медный (М)

алюми­ниевый (А)

сталеалю­миниевый (AC)

Наибольшая гололедная

I-II

2,8

2,9

2,1

2,7

3,0

нагрузка с давлением ветра

III-IV

V

3,0

3,2

3,0

3,2

2,2

2,4

3,0

3,5

3,5

4,0

Наибольшая ветровая нагрузка

-

2,8

2,9

2,1

2,7

3,0

Низшая температура воздуха

-

2,8

2,9

2,1

2,7

3,0

Примечание. Для несущих тросов компенсированных контактных подвесок величину Кз следует принимать равной: для троса марки ПБСМ-2,8; ПБСА-3,0; М-22.

Величину наибольшего допускаемого натяжения проводов несущих тросов Ндоп, кН (кгс), следует принимать по табл. 12.


Таблица 12

Расчетный

Гололедный

Наибольшее допускаемое натяжение кН (кгс) несущих тросов полукомпенсированных контактных подвесок и проводов воздушных линий (марок)

режим

район СССР

ПБСМ-70

ПБСМ-95

ПБСА-50/70

М-120

М-95

А-120

А-150

A-185

AC-25/4,2

AC-35/6,2

AC-50/8

AC-70/11

Наибольшая гололедная нагрузка

I-II

16,66(1700)

20,58 (2100)

18,62(1900)

20,58 (2100)

16,66 (1700)

7,35 (750)

8,33 (850)

10,29 (1050)

2,94(300)

4,41(450)

5,39 (550)

7,84 (800)

с давлением ветра

III-IV

15,68 (1600)

19,60 (2000)

17,64 (1800)

19,60 (2000)

15,68 (1600)

6,37 (650)

7,35 (750)

9,31 (950)

2,45 (250)

3,49 (350)

4,41 (450)

6,86 (700)

 

V

14,70 (1500)

17,29 (1800)

16,66 (1700)

18,62 (1800)

14,70 (1500)

5,39 (550)

6,37 (650)

7,84 (800)

1,96 (200)

2,94 (300)

3,92 (400)

5,88 (600)

Наибольшая ветровая нагрузка

-

16,66 (1700)

20,58 (2100)

18,62 (1900)

19,60 (2000)

16,66 (1700)

7,35 (750)

8,33 (850)

10,29 (1050)

2,94 (300)

4,41 (450)

5,39 (550)

7,84 (800)

Минимальная температура воздуха

-

16,66 (1700)

20,58 (2100)

28,62 (1900)

20,58 (2100)

16,66 (1700)

7,35(750)

8,33(850)

10,29(1050)

2,94(300)

4,41 (450)

5,39 (550)

7,84 (800)

Примечание. Для несущих тросов компенсированных контактных подвесок величину номинального натяжения следует принимать равной: для троса марки ПБСМ-70 - 15,68 (1600); ПБСМ-95 - 19,60 (2000); ПБСА-50/70 - 17,64 (1800); М-120 - 19,60 кН (2000 кгс).


3.5. Для новых марок несущих тросов контактных подвесок и проводов воздушных линий, не приведенных в табл. 11, коэффициент запаса прочности

,                                                                   (21)

где Кп - коэффициент надежности по нагрузке, принимаемый по табл. 13; Ко - коэффициент надежности по материалу; т - коэффициент условий работы; Кпу - коэффициент, равный отношению предела упругости материала провода к его временному сопротивлению при растяжении.

Значения коэффициентов т, Ко и Кпу приведены в табл. 14.

3.6. За исходный расчетный режим следует принимать режим, при котором при заданных расчетных условиях натяжение провода за срок его службы будет максимальным. Расчет производят в такой последовательности:

устанавливают режим наибольшей добавочной нагрузки;

по величине критического пролета и заданных пролетов анкерного участка с учетом способа закрепления провода на поддерживающих конструкциях (подвижные точки подвеса или нет) определяют исходный расчетный режим.

3.7. Критическим пролетом lкр следует считать пролет, в котором максимальное за срок службы натяжение провода (несущего троса) при низшей температуре воздуха равно натяжению при наибольшей добавочной нагрузке.

Для одиночного провода воздушной линии

,       (22)

где НДдоп, Нtдоп - наибольшее допускаемое значение натяжения провода воздушной линии соответственно при режиме наибольшей добавочной нагрузки и низшей температуре воздуха; qД - результирующая линейная нагрузка на провод воздушной линии при режиме наибольшей добавочной нагрузки, g - вес 1 м провода; tД, tmin -соответственно температура воздуха при режиме наибольшей добавочной нагрузки и низшая температура воздуха в заданном районе; a - температурный коэффициент линейного расширения материала провода; S, Е - соответственно сечение провода и модуль упругости материала провода.

3.8. Для пролетов длиной меньше критического за исходный расчетный режим следует принимать режим низшей температуры воздуха, для пролетов длиной больше критического - режим наибольшей добавочной нагрузки.

Таблица 13

 

 

Коэффициент надежности по нагрузке

 

 

Несущие тросы цепных контактных подвесок (марок)

Провода

Расчетный режим

Голо­ледный

полукомпенсированные

компенсированные

воздушных линий (марок)

 

район СССР

сталемед­ный (ПБСМ)

сталеалю­миние­вый (ПБСА)

медный (М)

стале­медный (ПБСМ)

сталеалю­миние­вый (ПБСА)

медный (М)

алюми­ниевый (А)

стале­алюми­ниевый (AC)

Наибольшая гололедная

I-II

1,05

1,10

1,10

1,10

1,10

1,15

1,10

1,10

нагрузка с

III-IV

1,19

1,15

1,15

1,10

1,10

1,15

1,20

1,30

давлением ветра

V

1,20

1,20

1,25

1,10

1,10

1,15

1,40

1,50

Наибольшая ветровая нагрузка

-

1,05

1,10

1,10

1,10

1,10

1,15

1,10

1,10

Минимальная температура воздуха

-

1,05

1,10

1,10

1,10

1,10

1,15

1,10

1,10

Таблица 14

 

Значения коэффициентов для несущего троса контактной подвески, провода воздушной линии марок

Коэффициент

сталемедный (ПБСМ)

сталеалюми­ниевый биметаллический (ПБСА)

медный (М)

алюминиевый (А)

сталеалюми­ниевый комбинированный (AC)

т

0,75

0,75

0,90

0,80

0,80

Ко

1,02

1,12

1,02

1,04

1,03

Кпу

0,52

0,57

0,60

0,53

0,48

3.9. Критической нагрузкой qкр следует считать такую нагрузку в режиме добавочной нагрузки, при которой максимальное натяжение провода равно наибольшему натяжению при низшей температуре воздуха.

Для провода воздушной линии

;                          (23)

где l - расчетный пролет, принимаемый равным при подвижных точках подвеса провода величине эквивалентного пролета.

3.10. Если qкр > qв, то за исходный расчетный режим следует принимать режим низшей температуры воздуха, если qкр < qД - режим наибольшей добавочной нагрузки.

3.11. Расчетный режим наибольшей добавочной нагрузки (гололедно-ветровая нагрузка или наибольшая ветровая нагрузка), при котором натяжение провода принимает максимальное значение, определяют следующим образом:

для провода воздушной линии

,                                                               (24)

где НГдоп и НВдоп - наибольшее допускаемое значение натяжения провода воздушной линии соответственно при режиме гололеда с ветром и наибольшей ветровой нагрузки; qВ - результирующая линейная нагрузка на провод воздушной липни при режиме наибольшей ветровой нагрузки.

Для несущего троса выражения аналогичные (22), (23) и (24) определяют из уравнения состояния для полукомпенсированной цепной контактной подвески.

Если qГ > q'Г, то за исходный расчетный режим следует принимать режим наибольшей гололедной нагрузки при одновременном воздействии давления ветра; при qГ < q'Г - режим наибольшей ветровой нагрузки.

Здесь qГ - результирующая линейная нагрузка на провод (несущий трос) при режиме гололеда с ветром.

3.12. Максимальное за срок службы натяжение провода равно наибольшему допускаемому натяжению при исходном расчетном режиме, умноженному на соответствующий коэффициент надежности по нагрузке

Нmax = НдопКп.                                                               (25)

3.13. Наименьшее за время эксплуатации провода значение разрушающей нагрузки

Rм = Rm/Ко.                                                                (26)

3.14. Натяжение провода воздушной линии при воздействии веса провода и сосредоточенных сил следует определять по уравнению состояния провода

,      (27)

где Р1, Р2, Р3Рi, Рк - сосредоточенные силы, действующие на провод в исходном режиме на расстоянии а от левой опоры на расстоянии вi от правой; i = 1, 2, 3 … К - число действующих на провод в исходном расчетном режиме сосредоточенных сил; Рх1, Рх2, Рх3Рхm ... Pxn - сосредоточенные силы, действующие на провод в рассчитываемом режиме на расстоянии am от левой опоры и на расстоянии вm от правой; i = l, 2, 3 ... К - число действующих на провод в рассчитываемом режиме сосредоточенных сил.

Индекс «1» относится к величинам в исходном расчетном режиме и индекс «х» - в рассчитываемом режиме.

3.15. Стрела провеса провода воздушной линии на расстоянии х от левой опоры определяется по следующему выражению:

,                                    (28)

где Рп - сосредоточенные силы, действующие на провод слева от сечения х.

4. ЗАЩИТА КОНСТРУКЦИЙ КОНТАКТНОЙ СЕТИ ОТ КОРРОЗИИ

4.1. Проектирование защиты стальных конструкций контактной сети, железобетонных опор и фундаментов от коррозии следует производить в соответствии с рекомендациями главы СНиП по защите строительных конструкций от коррозии, «Инструкции по заземлению устройств электроснабжения на электрифицированных железных дорогах» и других действующих нормативных документов по проектированию антикоррозионной защиты строительных конструкций, утвержденных в установленном порядке.

4.2. Обеспечение требуемой долговечности стальных несущих конструкций контактной сети следует достигать путем:

устройства защиты от агрессивных воздействий окружающей среды;

применения атмосферостойких сталей, при необходимости в сочетании с защитными покрытиями;

других способов увеличения срока службы конструкций по условиям коррозии (приложение 9).

Предпочтение следует отдавать металлизационным и комбинированным защитным покрытиям.

4.3. Поверхности металлических конструкций должны быть доступны для очистки и нанесения защитных покрытий. Зазоры между стыкуемыми элементами должны отсутствовать.

4.4. Подготовка поверхности металла под алюминирование должна выполняться сухим способом для исключения отложения солей в щелях между стыкуемыми элементами сварных конструкций, неизбежного при химическом методе.

4.5. После выполнения сварки алюминированного проката сварные соединения дополнительно защищают от коррозии, нанося алюминиевые покрытия на сварной шов методом газопламенного напыления.

4.6. Стальные детали контактной сети должны быть, как правило, оцинкованы. Толщина покрытий стальных деталей должна приниматься в соответствии с требованиями главы СНиП по защите строительных конструкций от коррозии.

4.7. В рабочих чертежах железобетонных опор и фундаментов необходимо указывать тип вяжущего и заполнителей для изготовления бетона, наиболее стойкие в данной среде, минеральные и органические добавки к бетону, требуемую плотность бетона, характеризуемую коэффициентом фильтрации или соответствующей ему маркой по водопроницаемости, толщину защитного слоя бетона, вид арматуры и способы ее фиксации, способ и средства защиты от агрессивных сред, периодичность восстановления их.

4.8. Предохранение арматуры железобетонных опор и фундаментов от коррозии должно обеспечиваться в соответствии с рекомендациями раздела II главы СНиП по защите строительных конструкций от коррозии.

4.9. На фундаментную часть центрифугированных опор, стаканные и свайные фундаменты, предназначенные для работы в неагрессивных средах, защитные покрытия можно не наносить.

4.10. В грунтах с агрессивными средами область применения бетона для фундаментов и опор, а также область применения бетонов разной плотности раздельных опор определять в соответствии с приложением 10.

4.11. Фундаменты металлических опор должны выступать из грунта не менее чем на 300 мм. Оголовки фундаментов заделывать не следует. Сечения анкерных болтов следует подбирать с учетом износа их в зоне, расположенной выше обреза фундамента.

5. ПРОЕКТИРОВАНИЕ МЕТАЛЛИЧЕСКИХ КОНСТРУКЦИЙ ОПОРНЫХ, ПОДДЕРЖИВАЮЩИХ И ФИКСИРУЮЩИХ УСТРОЙСТВ КОНТАКТНОЙ СЕТИ

Материалы для металлических конструкций контактной сети

5.1. Стальные конструкции устройств энергоснабжения железных дорог распределяются по условиям применения сталей на следующие группы, нумерация которых соответствует нумерации групп, приведенных в табл. 50 приложения 1 главы СНиП по проектированию стальных конструкций.

Группа 1. К конструкциям устройств энергоснабжения не относится.

Группа 2. Конструкции и элементы, связанные с натяжением проводов;

тяги консолей и кронштейнов;

закладные детали для их крепления;

штанги, хомуты и штанги анкерных оттяжек;

компенсаторные ролики, полухомуты (с резьбой и сваркой);

детали для крепления жестких поперечин к наголовникам;

бугели штампованные и т. п.

Для группы 2 применять сталь по табл. 15.

Группа 3. Элементы узлов крепления поддерживающих устройств (сварные, штампованные, гнутые); элементы закладных деталей (кроме болтов), пяты и хомуты для крепления консолей и кронштейнов и т. п.

Конструкции и элементы несущих, поддерживающих и фиксирующих устройств (сварные, гнутые, штампованные); опоры, ригели и оголовки жестких поперечин, прожекторные мачты, опоры молниеотводов, подкосы консолей, кронштейны ЛЭП и дополнительных проводов (кроме тяг из круглой стали), кронштейны анкерных оттяжек, стойки консольные и фиксаторные, стойки-надставки для опор и жестких поперечин, траверсы переходных опор, фиксаторы и фиксаторные кронштейны, коромысла анкеровок и т. п., конструкции ОРУ и тяговых подстанций.

Таблица 15

 

Сталь

 

ГОСТ или ТУ

Категории стали для климатического района строительства (расчетная температура, °С)

 

 

II4 (-30 > t ³ -40) II5 и др. (t ³ -30)

I2, II2 и II3 (-40 > t ³ -50)

I1 (-50 > t ³ -65)

С245

ГОСТ 27772-88*

+Г

-

-

С255

ГОСТ 27772-88*

+

-

-

Круглая сталь СтЗкп и СтСп5

ГОСТ 535-88

 

 

 

С245

ГОСТ 27772-88

+Г

-

-

С255

То же

+

-

-

С275

»

+Г

-

-

С285

»

+

-

-

С345

»

1

3,4

4а, д)

С345К

»

+

-

-

С375

»

1

3

4а, д)

_________

* Кроме круглой стали.

Для группы 3 применять сталь по табл. 16.

Таблица 16

 

Сталь

 

ГОСТ или ТУ

Категории стали для климатического района строительства (расчетная температура, °С)

 

 

II4 (-30 > t ³ -40) II5 и др. (t ³ -30)

I2, II2 и II3 (-40 > t ³ -50)

I1 (-50 > t ³ -65)

С235

ГОСТ 27772-88*

+е, н

-

-

С245

То же

+

-

-

С255

»

+

+ж

-

С275

»

+

-

-

С285

»

+

+ж

-

С345

»

1

1

2 или 3,4

С345К

»

+

+

-

С375

»

1

1

2 или 3

С390

»

+

+

+

С390К

»

+

+

+

___________

* Кроме круглой стали

Группа 4. Конструкции ВЛ до 1 кВ, вспомогательные конструкции и элементы (сварные, штампованные, гнутые); кронштейны для светильников и прожекторов, оснастка молниеотводов, детали ограничителей, анкеровочные устройства, заградительные щиты, детали заземления и т. п.

Для группы 4 применять сталь согласно табл. 17.

Таблица 17

 

Сталь

 

ГОСТ или ТУ

Категории стали для климатического района строительства (расчетная температура, °С)

 

 

II4 (-30 > t ³ -40) II5 и др. (t ³ -30)

I2, II2 и II3 (-40 > t ³ -50)

I1 (-50 > t ³ -65)

С235

ГОСТ 27772-88*

+

-

-

С245

То же

-

+

+

С255

»

-

+

+

С275

»

-

+

+

С285

ГОСТ 27772-88

-

+

+

ВСтЗкп толщиной до 4 мм)

ГОСТ 10705-80*, группа В, табл. 1

2е

2е

2е

ВСтЗкп (толщиной 4,5-10мм)

То же

2е

-

-

ВСтЗпс (толщиной 5-15 мм)

ГОСТ 10706-76*, группа В с доп. требованием по 1.6

4

4

-

ВСтЗпс (толщиной до 6,5 мм)

ГОСТ 10705-80*, группа В, табл. 1

2е

2е

2е

ВСтЗпс (толщиной 6-10 мм)

ГОСТ 10705-80*, группа В, табл. 1

6

6

-

__________

* Кроме круглой стали.

Обозначения, принятые в табл. 15-17:

а) фасонный прокат толщиной до 11 мм, а при согласовании с изготовителем до 20 мм; листовой - всех толщин;

г) для района II4 для неотапливаемых зданий и конструкций, эксплуатируемых при температуре наружного воздуха, применять толщины не более 10 мм;

д) при толщине проката не более 11 мм допускается применять сталь категории 3;

е) кроме опор ВЛ, ОРУ и КС;

ж) прокат толщиной до 10 мм и с учетом требований разд. 10 СНиП по проектированию стальных конструкций;

и) кроме района II4 для неотапливаемых зданий и конструкций, эксплуатируемых при температуре наружного воздуха.

Знак «+» означает, что данную сталь следует применять; знак «-» означает, что данную сталь в указанном климатическом районе применять не следует.

1. Требования настоящих таблиц распространяются на листовой прокат толщиной от 2 мм и фасонный прокат толщиной от 4 мм по ГОСТ 27772-88; сортовой прокат (круг, квадрат, полоса) применять по ТУ 14-1-3023-80, ГОСТ 380-71** (с 1990 г. ГОСТ 535-88 и с 1991 г. ГОСТ 380-88 и ГОСТ 19281-73*. Указанные категории стали относятся к прокату толщиной не менее 5 мм. При толщине менее 5 мм приведенные в таблице стали применяются без требований по ударной вязкости.

2. Климатические районы строительства устанавливаются в соответствии с ГОСТ 16350-80 «Климат СССР. Районирование и статистические параметры климатических факторов для технических изделий». Указанные в головке таблиц в скобках расчетные температуры соответствуют температуре наружного воздуха соответствующего района, за которую принимается средняя температура наиболее холодной пятидневки согласно указаниям СНиП по строительной климатологии и геофизике.

3. При соответствующем технико-экономическом обосновании стали С345, С375 могут заказываться как стали повышенной коррозионной стойкости (с медью) - С345Д, С375Д.

4. Применение термоупрочненного прокатного нагрева фасонного проката из стали С345Т и С375Т, поставляемого по ГОСТ 27772-88 как сталь С345 и С375, не допускается в конструкциях, которые при изготовлении подвергаются металлизации или пластическим деформациям при температуре выше 700 °С.

5. К сортовому прокату (круг, квадрат, полоса) по ТУ 14-1-3023-80, ГОСТ 380-71** (с 1990 г. ГОСТ 535-88) и ГОСТ 19281-73* предъявляются такие же требования, как к фасонному прокату такой же толщины по ГОСТ 27772-88. Соответствие марок сталей по ТУ 14-1-3023-80, ГОСТ 380-71* и ГОСТ 19281-73*, ГОСТ 19282-73*, сталей по ГОСТ 27772-88 следует определять по табл. 51, б главы СНиП по проектированию стальных конструкций.

5.2. Для болтовых соединений конструкций контактной сети, а также для фундаментных блоков следует применять стальные болты и гайки в соответствии с требованиями Главы СНиП 11-23-81* по проектированию стальных конструкций (табл. 57*) с учетом того, что конструкции контактной сети не рассчитываются на выносливость.

5.3. Валики надлежит применять:

при расчетной температуре минус 30 °С и выше - из углеродистой стали С235 по ГОСТ 27772-88;

при расчетной температуре минус 40 °С и выше - из углеродистой стали С255 по ГОСТ 27772-88;

при расчетной температуре минус 65 °С из углеродистой стали или из низколегированной стали С345 по ГОСТ 27772-88.

5.4. Приведенные выше понятия «штампованные или гнутые» относятся только к холодной штамповке или гнутью (без нагрева).

5.5. Стальные конструкции контактной сети должны иметь надежное защитное покрытие от коррозии (окраска, оцинковка, алюминирование и т. .п.).

Стальные сварные конструкции, для которых предусматривается горячее оцинкование или алюминирование, должны иметь сварные соединения встык; сварка внахлестку не допускается.

Все конструкции контактной сети при изготовлении нужно маркировать с указанием года изготовления и завода-изготовителя; на каждую отгружаемую с завода партию конструкций и деталей должен быть сертификат с указанием марки стали.

5.6. Применение алюминиевых сплавов для конструкции контактной сети допускается при технико-экономическом обосновании его целесообразности.

5.7. Для конструкций контактной сети в основном рекомендуются сплавы АМг2М, АМг2П, АД31Т, АД31Т1 в соответствии с требованиями СНиП по алюминиевым конструкциям.

5.8. Алюминиевые сплавы марок, не указанных в п. 5.7, применяют по отдельному разрешению организации, утверждающей проект.

5.9. Материалы для заклепок, болтов, отливок из литейных алюминиевых сплавов, а также для электродов и присадочного материала следует применять в соответствии с указаниями пп. 2.6.-2.9 СНиП по алюминиевым конструкциям.

Расчетные характеристики материалов и соединений

5.10. Физические характеристики стали (модули упругости, коэффициенты поперечной деформации, коэффициент литейного расширения, объемный вес) принимают согласно указаниям табл. 63 приложения 3 Главы СНиП II-23-81* по проектированию стальных конструкций.

5.11. Расчетные сопротивления стали при проектировании конструкций контактной сети принимают согласно указаниям пп. 3.1, 3.2 и табл. 2 и 7 Главы СНиП П-23-81* по проектированию стальных конструкций.

5.12. Расчетные сопротивления (усилия) при растяжении стального каната принимают равными значению разрывного усилия каната в целом, установленному государственными стандартами или заводскими сертификатами, деленному на коэффициент безопасности по материалу 1,6 и умноженному на коэффициент условий работы элемента конструкций, принимаемый по табл. 18.

5.13. Для конструктивных элементов, не перечисленных в табл. 18, коэффициент условий работы принимают m = 1.

5.14. Расчетные сопротивления сварных соединений, выполняемых при монтаже, должны быть дополнительно понижены путем умножения на коэффициент, равный 0,8 (см. табл. 18).

5.15. Расчетные сопротивления болтовых соединений следует принимать по табл. 58*-61* главы СНиП II-23-81* по проектированию стальных конструкций.

5.16. Расчетные сопротивления стали в конструкциях контактной сети понижают умножением на коэффициенты условий работы, принимаемые по табл. 18.

Таблица 18

№ пп

Наименование конструктивных элементов

Коэффициент условия работы

1

Решетки с проколотыми дырами

0,9

2

Сжатые и растянутые элементы поясов и растянутые элементы решетки

0,95

3

Сжатые основные элементы решетки при гибкости их l ³ 60

0,8

4

Сжатые раскосы из одиночных уголков, прикрепляемые к поясам одной полкой сваркой или двумя и более заклепками, располагаемыми по длине раскоса:

 

 

а) треугольная и перекрестная решетка с несовмещенными в смежных гранях узлами

0,8

 

б) перекрестная решетка с совмещенными в смежных гранях узлами

0,9

5

Сжатые раскосы из одиночных уголков, прикрепляемых к поясу одной полкой на болтах или на одной заклепке

0,75

6

Оттяжки продольные и поперечные:

 

 

а) из круглой стали

0,9

 

б) из стальных канатов

0,8

7

Фиксаторы и фиксаторные кронштейны

0,85

8

Анкеровочные устройства и анкеровочные болты

0,75

9

Стяжные болты, работающие на растяжение

0,65

10

Сжато-изогнутые элементы консолей и фиксаторов при гибкости l ³ 200

'0,8

11

Сварные соединения, выполняемые при монтаже в полевых условиях

0,8

5.17. Расчетные сопротивления деформируемых алюминиевых сплавов, отливок, сварных, заклепочных и болтовых соединений для расчетных температур наружного воздуха в интервале от 50 до 65 °С следует принимать согласно указаниям главы СНиП по проектированию стальных конструкций.

5.18. При расчете элементов и соединений конструкций и алюминиевых сплавов расчетные сопротивления следует умножать на коэффициенты условий работы, принимаемые согласно указаниям главы СНиП по проектированию стальных конструкций.

Для сжато-изогнутых элементов консолей и фиксаторов при l ³ 200 коэффициент условий работы следует принимать m = 0,8.

5.19. Расчетное сопротивление изгибу для стержневых фарфоровых изоляторов, применяемых в консолях и фиксаторах, Rф до Н/см2, принимают в соответствии с результатами испытаний следующим:

Для консольных изоляторов ИКСУ-27                             190

(при разрушающей нагрузке на изолятор в целом)          110

Для фиксаторных изоляторов VK.L-60/7                           300

(при разрушающей нагрузке на изолятор в целом)            80

Примечание. При изменении геометрических размеров и технологии изготовления стержневых изоляторов расчетные сопротивления для них необходимо определять дополнительно.

Проектирование стальных конструкций опорных и поддерживающих устройств

5.20. Расчет стальных конструкций контактной сети выполняют в соответствии с требованиями главы СНиП по проектированию стальных конструкций и дополнительными указаниями данных Норм.

5.21. Типовые консольные опоры контактной сети рассчитывают на нагрузки, соответствующие огибающим эпюрам изгибающих моментов и поперечных сил, приведенным для железобетонных опор в гл. 6 настоящих Норм. Кроме этого, должна быть произведена проверка на действие нагрузок, возникающих при обрыве проводов.

Расчет нетиповых (индивидуальных) стальных опор следует производить на нагрузки, определяемые в проектах конкретными условиями.

5.22. Типовые стальные станционные опоры гибких поперечин и фундаменты для них рассчитывают по обобщенным эпюрам изгибающих моментов, поперечных (перерезывающих) и продольных (вертикальных) сил.

Расчетные нагрузки для проектирования типовых стальных опор гибких поперечин определяют путем умножения значений нормативных нагрузок на обобщенный коэффициент перегрузки nоб = 1,15.

Для подбора опор гибких поперечин расчетным является режим гололеда с ветром или режим максимального ветра. При небольшом поперечном пролете (до 30 м) расчетным может быть режим максимального ветра. Расчетным является сечение на уровне обреза фундамента.

Расчет опор гибких поперечин в направлении, перпендикулярном оси пути, производят на действие внешних сил от натяжения поперечного несущего троса, приложенного к вершине опоры, и от натяжений верхнего и нижнего фиксирующего тросов, приложенных соответственно на высоте 10 и 7,5 м от уровня обреза фундамента, а также от давления ветра на опору.

Горизонтальную силу от натяжения поперечного несущего троса принимают равной частному от деления максимального изгибающего момента от вертикальных сил (считая трос как балку на двух опорах) на стрелу провеса троса в этом же сечении; вертикальную составляющую натяжения этого троса принимают равной половине вертикальных сил, действующих на трос.

Нормативная горизонтальная сила натяжения поперечного несущего и фиксирующего тросов, принятая при расчете типовых опор гибких поперечин, приведена в табл. 19.

Таблица 19

Опоры

Горизонтальная сила натяжения, кН

Высота, м

Момент, кНм

поперечного несущего троса

каждого из фиксирующих тросов

15

350

16,00

7,00

15

450

22,00

7,00

15

650

34,00

8,00

20

650

26,00

7,00

20

850

35,00

8,50

20

1050-

44,00

10,00

20

1500

62,00

15,00

Промежуточные опоры гибких поперечин необходимо проверять расчетом на следующие нагрузки:

а) усилия от анкеровки одиночных проводов, создающие нормативный изгибающий момент на уровне обреза фундамента, - 100 кНм;

б) продольная составляющая от нагрузок, действующих перпендикулярно оси пути при возможном развороте опоры на 5°;

в) давление ветра на опору.

Анкерные опоры гибких поперечин рассчитывают на действие изгибающего момента вдоль пути, равного 250 кНм на уровне обреза фундамента.

5.23. Стальные конструкции опорных и поддерживающих устройств нужно проверять на действие монтажных нагрузок.

5.24. Расчет центрально-сжатых и центрально-растянутых элементов, а также расчет сварных соединений стальных конструкций опорных и поддерживающих устройств осуществляют согласно указаниям СНиП II-23-81*.

5.25. Расчет элементов стальных опор, на которые действуют нагрузки (изгибающие моменты) перпендикулярно и вдоль оси пути, для анкерных самонесущих опор или для промежуточных опор при обрыве проводов выполняют на усилия, получаемые суммированием воздействия от моментов, действующих в двух взаимно перпендикулярных плоскостях.

5.26. Пространственную решетчатую конструкцию металлической опоры следует рассматривать как консольный стержень.

При действии на опору несимметричной нагрузки усилия в элементах складываются из усилий от изгиба и кручения.

Изгибающая сила распределяется между плоскими вертикальными фермами.

Усилия, возникающие при кручении в элементах призматических стержней квадратного и прямоугольного сечений, определяют по табл. 20.

В табл. 20 ; ; ; ; ; ; ; ; ;

lo – расстояние от места приложения крутящего момента для рассматриваемого сечения; da и dв - длины раскосов соответственно по сторонам a и в.

Крутящий момент в стержнях определяют в зависимости от их вида в соответствии с табл. 21.


Таблица 20

 

 

Усилия в элементах пространственных стержней сечением

Тип решетки

Развертка боковой

квадратным

прямоугольным

 

поверхности стержня

 

 

 

по стороне а

по стороне в

 

 

 

раскосы

распорки

пояса

раскосы

распорки

раскосы

распорки

пояса

Треугольная с совмещенными в смежных гранях узлами

± К1Мкр

0

0

± К4Мкр

0

± К5Мкр

0

± KloМкр

То же с несовмещенными в смежных гранях узлами

± К1Мкр

0

± К3Мкр

± К4Мкр

0

± К5Мкр

0

± (Klo + Ко)Мкр

Раскосная

± К1Мкр

± К2Мкр

± К3Мкр

± К4Мкр

± К5Мкр

± К5Мкр

± К7Мкр

± (Klo + Ко)Мкр

Полураскосная

± К1Мкр

± К2Мкр

0

± К4Мкр

± К5Мкр

± К5Мкр

± К7Мкр

+ К(loh)Мкр


Таблица 21

Вид стержня

Эскиз и эпюра момента

Крутящий момент

С одной опорой

Мкр

С двумя опорами

;

Перерезывающие силы в гранях при кручении стержней определяют по табл. 22.

Таблица 22

Сечение стержня

Схема действующих усилий

Перерезывающая сила

Квадратные

Прямоугольное

5.27. Расчет деформаций (прогибов) опор с переменным по высоте моментом инерции допускается выполнять делением всей высоты опоры на четыре части и определением среднего момента инерции для каждой части.

Прогиб б вершины опоры от действия силы Р, приложенной в той же точке, определяют

,                                (32)

где I1, I2, I3, I4 - моменты инерции посередине каждого из четырех участков (рис. 11).

Рис. 11. Схема опоры с переменным моментом инерции для расчета ее прогибов в точках: а-А; б-Б

При действии нескольких сил на опору их располагают на границах смежных участков.

Если необходимо определить прогиб d2 точки В, в которой сила не приложена (например, на уровне контактного провода), то находят прогиб ближайшей точки на границе двух участков, а прогиб d2 - по формуле (33).

,                                                      (33)

(прогиб d1 находят по формулам, аналогичным указанной выше для определения d).

5.28. При центрировании решетки в конструкциях из одиночных уголков на обушок поясного уголка влияние эксцентриситета в узлах можно не учитывать при расчете конструкций:

с учетом обрыва проводов на совместное действие продольной силы, поперечной силы и крутящего момента;

на расчетные нагрузки (без учета кручения), когда величины усилий в элементах решетки не превышают 15 % максимального усилия в поясе от той же нагрузки.

Если усилия в элементах решетки превышают 15 % максимального усилия в поясе от той же нагрузки, необходимо центрировать раскосы на центр тяжести пояса или увеличивать расчетные усилия в элементах опоры (поясах и раскосах) путем умножения на коэффициент а, значения которого приведены в табл. 23.

Таблица 23

Отношение усилия в раскосе к усилию с поясе, %

До 15

30

40

50

Коэффициент а

1

1,02

1,04

1,07

5.29. Для составных центрально-сжатых стержней опор с поясами из равнобоких уголков, ветви которых соединены планками пли решетками, коэффициент продольного изгиба относительно свободной оси, перпендикулярной плоскости планок и решеток, нужно определять по приведенной гибкости lгр, вычисляемой в соответствии с указаниями СНиП II-23-81*.

Гибкость отдельных ветвей lв на участке между планками должна быть не более 40. В составных стержнях с решетками гибкость отдельных ветвей На участках между узлами не должна превышать приведенную гибкость lпр стержня в целом.

5.30. Предельные гибкости элементов опор и жестких поперечин должны соответствовать требованиям главы СНиП по проектированию стальных конструкций.

5.31. Составные, внецентренно-сжатые сквозные стержни подлежат проверке как по общей устойчивости в соответствии с указаниями главы СНиП по проектированию стальных конструкций, так и по устойчивости отдельных ветвей.

Отдельные ветви решетчатой стойки проверяют, как центрально-сжатые в панели с максимальным сжимающим усилием, которое определяют нормальной силой и изгибающим моментом, действующими в сечениях составной решетчатой стойки.

5.32. Проверку местной устойчивости пояса стойки с планками в панели с максимальным изгибающим моментом выполняют в соответствии с указаниями, главы СНиП II-23-81* по проектированию стальных конструкций, как для элементов сплошного сечения.

Максимальный изгибающий момент в ветви сквозного стержня с планками определяют:

для опоры, имеющей две стойки (швеллерной),

,                                                           (34)

для опоры, имеющей четыре стойки (уголковой),

.                                                         (35)

где lп - расстояние между центрами планок; Q - максимальная поперечная сила, действующая на опору и принимаемая постоянной по всей длине стопки.

Расчет планок (рис. 12) следует выполнять на перерезывающую силу Т и изгибающий момент М, определяемые по формулам (36)-(40) для четырехгранных стоек

;                                                                 (36)

;                                                                (37)

для трехгранных стоек

;                                                                (38)

M = 0,6Qпlп;                                                            (39)

.                                                             (40)

Значение условной поперечной силы Qусл, приходящейся на элементы одной грани составного стержня, определяют по табл. 24, где Fs площадь брутто всего стержня, см2.

Рис. 12. Схема усилий при расчете планок стальных опор

Таблица 24

Для конструкций из стали классов

Поперечная сила Qусл

кН для стержней

 

четырехгранных

трехгранных

С38/23

0,10Fs

0,12Fs

С44/29

0,15Fs

0,18Fs

С46/33

0,20Fs

0,24Fs

С52/40

0,20Fs

0,24Fs

5.33. Соединительные решетки следует рассчитывать, как решетки у ферм.

5.34. Соединение ветвей внецентренно-сжатого стержня с помощью планок не рекомендуется, если условная поперечная сила меньше реальной поперечной силы.

Соединительные элементы сквозных стержней в виде планок можно применять только при соединении их с поясами на сварке.

Соединительные элементы (планки пли решетки) внецентренно-сжатых стержней нужно рассчитывать либо на фактическую поперечную силу, либо на условную поперечную силу. При этом в качестве расчетной поперечной силы принимают большую из них.

5.35. На участках постоянного тока стальные опоры должны иметь изоляцию от арматуры или анкерных болтов железобетонного фундамента, а на участках переменного тока такая изоляция должна быть на опорах, заземляемых присоединением к рельсу наглухо без искровых промежутков при двухниточных рельсовых цепях СЦБ.

5.36. Местные нагрузки на панели поясов стальных решетчатых конструкций учитывают по их фактической величине и направлению, считая панель, как трехпролетную балку, шарнирно-опертую в узлах; при этом пояса рассчитывают на сложное сопротивление от действия продольной силы и местного изгибающего момента.

5.37. При расположении анкерных болтов с эксцентриситетом относительно осей поясов и при наличии опорной рамы, служащей для передачи усилий от анкерных болтов поясам, допускается пользоваться приближенным расчетом, в котором не учитывают дополнительные моменты в поясах от указанного эксцентриситета.

При расчете опорной рамы необходимо учитывать изгибающий момент, обусловленный наличием эксцентриситета е.

5.38. Схемы решетки, размеры поперечных сечений и сбег стальных опор по высоте выбирают на основе сравнения вариантов с учетом специфики условий эксплуатации.

5.39. Конструкции стальных опор должны учитывать условия крепления на них консолей, кронштейнов, поперечных несущих и фиксирующих тросов и т. п.

5.40. Если длина стальной конструкции более длины выпускаемых промышленностью элементов проката (уголков, швеллеров и пр.), то при изменении сечений поясов следует ориентироваться на использование полных длин профильной стали по сортаменту.

Проектирование жестких поперечин

5.41. В зависимости от конструктивного выполнения и расчетной схемы жесткие поперечины могут быть балочного и рамного типов. В направлении, перпендикулярном к оси пути, жесткие поперечины балочного типа рассчитывают, как балки на двух шарнирных опорах, а поперечины рамного типа - как рамы. В направлении вдоль пути ригель в обеих схемах рассчитывают, как балку на двух шарнирных опорах с учетом реакции тросов подвески. Рекомендуется преимущественно применять поперечины рамного типа.

Для предотвращения гнездования птиц следует изготавливать нижнюю горизонтальную ферму жестких поперечин без распорок.

5.42. Жесткие поперечины рамного и балочного типов следует рассчитывать по несущей способности на действие суммарных расчетных нагрузок, а по деформациям - на действие суммарных нормативных нагрузок. Для жестких поперечин, перекрывающих четыре и более путей, толщину раскосов и стоек ригелей допускается по согласованию с Госстроем принимать до 5 мм. Рекомендуется для ригелей жестких поперечин применять атмосферостойкие низколегированные стали.

Расчет прогибов ригелей жестких поперечин рекомендуется выполнять на нормативную суммарную нагрузку от постоянной и временной нагрузки, при этом величина допускаемого вертикального прогиба должна составлять 1/150 длины пролета. Строительный подъем рекомендуется назначать равным прогибу.

5.43. В рамных поперечинах для расчета деформаций опор с переменным по высоте моментом инерции всю высоту опоры можно разделить на три равные части, считая от вершины опоры до уровня поверхности грунта. Момент инерции каждой части определяют по среднему сечению и принимают постоянным для всего участка.

5.44. Жесткие поперечины рамного типа не рекомендуется применять в неустойчивых и пучинистых грунтах.

5.45. Ригели жестких поперечин рамного типа выполняют в виде сквозных ферм, свариваемых на комплектовочных базах из отдельных блоков, длину которых определяют из условий перевозки на железнодорожном подвижном составе.

5.46. Требуемую по условиям расположения путей длину поперечин обеспечивают уменьшением числа панелей в крайних блоках.

5.47. В поперечинах рамного типа требуемую длину поперечин, кроме уменьшения числа панелей, обеспечивают изменением длины монтажных панелей.

5.48. Для каждой длины поперечины 2-3 типа по несущей способности за счет изменения сечения поясных уголков.

5.49. В рабочих чертежах жестких поперечин необходимо приводить указания по подбору типоразмеров железобетонных опор и заделке их в грунте.

5.50. Расчет жестких поперечин необходимо выполнить на следующие сочетания нагрузок:

а) постоянные нагрузки в сочетании с гололедом и ветровой нагрузкой при направлении ветра перпендикулярно оси пути;

б) то же при направлении ветра вдоль оси пути;

в) постоянные нагрузки в сочетании с действием ветра, направленного перпендикулярно оси пути;

г) то же при направлении ветра вдоль оси пути;

д) постоянные нагрузки в сочетании с гололедом и усилием, возникающим при обрыве несущего троса по одному главному пути.

Для рамных поперечин решающим при расчете стоек является сочетание «а», а при расчете ригеля - сочетание «б» и «д».

Для балочных поперечин расчет ригеля и стоек необходимо выполнять на сочетания «б», «г», «д».

5.51. Жесткие поперечины в нормальном режиме рассчитывают на вертикальные нагрузки, сосредоточенные в местах крепления подвески к поперечинам, от массы контактной подвески, изоляторов и арматуры, а также гололеда на проводах и на нагрузки от гололеда на поперечине, равномерно распределенные по ее длине при одновременном действии ветровой нагрузки.

5.52. Массу ригеля рамной жесткой поперечины учитывают в монтажном состоянии как для статически определимой двухшарнирной балки, свободно опирающейся на стойки. Полученную эпюру моментов суммируют с эпюрой моментов от нагрузок заданного расчетного сочетания в рамной схеме поперечины.

Первоначально, когда неизвестна масса конструкции ригеля рамной жесткой поперечины, ее принимают для расчета по действующему типовому проекту балочных поперечин с коэффициентом 0,9.

Расположение по длине поперечины вертикальных нагрузок от контактных подвесок и станционных путей, а также горизонтальной нагрузки от обрыва проводов принимают таким, которое создает наиболее тяжелые условия загружения.

При определении расчетных нагрузок каждую из нормативных нагрузок умножают на коэффициент перегрузки.

5.53. На нагрузки, действующие вдоль пути (ветровые, усилие от обрыва несущего троса), ригель поперечины рекомендуется рассчитывать с учетом реакции тросов.

Ригель имеет расчетную схему по типу двухшарнирной балки. Жесткость балки определяют, как сумму жесткостей двух горизонтальных ферм ригеля.

Реакции тросов направлены в сторону, противоположную действию внешней нагрузки, и приложены в местах прикрепления цепных подвесок к ригелю. При этом равномерно распределенную ветровую нагрузку на ригель необходимо заменить сосредоточенными силами, приложенными в местах прикрепления к ригелю подвесок. Усилие от обрыва несущего троса приложено как сосредоточенная сила в месте прикрепления к ригелю цепной подвески одного из главных путей.

5.54. Для определения реакций тросов ригель рассматривают, как статически неопределимую балку на промежуточных линейно деформируемых опорах в местах прикрепления продольных несущих тросов цепных подвесок. Цифрами на рис. 13, 14 обозначены номера путей.

Места соединения ригеля с железобетонными стойками рассматривают как податливые опоры ввиду деформативности стоек.

Основная статически определимая система получается отбрасыванием лишних связей (промежуточных опор) и заменой их неизвестными силами х1 ... хi представляющими собой реакции тросов (см. рис. 13, 14), для определения которых составляются системы канонических уравнений.

Рис. 13. Схема для расчета жесткой поперечины с учетом реакции тросов:

а - общий вид; б - схема ригеля на упругих опорах; в - расчетная схема

а)

б)

в)

Рис. 14. Расчетная схема определения жесткости податливой связи:

а - расчетная схема поперечины в плане; б - действительная схема деформации ригеля; в - схема приложения усилия от реакции тросов

                          (41)

Здесь dij - единичные перемещения по направлению i-й связи от j-й реакции - находят перемножением единичных эпюр моментов:

,                                                       (42)

Dip - грузовые перемещения по направлению i-й связи - находят перемножением соответствующих площадей единичных эпюр моментов и грузовых эпюр:

,                                                   (43)

 - перемещение по направлению i-й податливой связи (в i-й точке подвеса гирлянды изоляторов) от единичной силы, приложенной в любой точке j ригеля, вследствие податливости опор на концах балки (перемещения вершин железобетонных стоек):

,                                                         (44)

аij - коэффициент положения связи относительно вершин стоек;

 - прогиб вершины стойки от приложенной к ней единичной силы:

.                                                    (45)

Коническую железобетонную опору, имеющую переменную по длине жесткость, разбивают на три равных участка. Момент инерции каждого участка определяют по среднему диаметру:

,                                                    (46)

 - аналогичные перемещения от внешних сил определяют по формуле:

.                                                       (47)

Здесь аiр - коэффициент положения внешней силы относительно вершин стоек.

Жесткости К1 податливых связей определяют в зависимости от массы цепных подвесок Gi, гирлянд изоляторов g, а также от расстояния l, см от низа гирлянды до точки поворота (см. рис. 12).

С достаточной степенью точности жесткость Кi может быть определена по формуле:

.                                                 (48)

5.55. Жесткие поперечины рамного типа следует рассчитывать методом сил как трижды статически неопределимые системы с жесткой или упруго податливой заделками стоек в грунте.

5.56. При расчетах на действие внешних сил уравнения деформации выражают условие равенства нулю перемещений по направлению лишних связей:

,

,                                             (49)

где х1, х2, х3 - неизвестные силы по направлению отброшенных связей в основной системе.

5.57. Расчет жестких поперечин рамного типа рекомендуется выполнять на ЭВМ с использованием разработанной в ЦНИИСе программы «Расчет и подбор жестких поперечин рамной конструкции контактной сети электрифицированных железных дорог», инв.№ 50860000626.

5.58. Расчет элементов ригелей жестких поперечин, представляющих собой пространственные конструкции из одиночных уголков, выполняется по рекомендациям главы СНиП по проектированию стальных конструкций, гл. 5.

Проектирование консолей

5.59. Расчет консолей рекомендуется осуществлять на следующие сочетания нагрузок: основные; особые.

Размеры сечений следует определять по наиболее невыгодному сочетанию нагрузок.

Проверку расчетов на действие монтажных нагрузок и нагрузок, возникающих при обрыве проводов, нужно производить для всех консолей.

5.60. Расчет центрально-сжатых, центрально-растянутых и изгибаемых элементов, а также сжато-изогнутых элементов, имеющих гибкость менее 200, и расчет соединений стальных конструкций консолей производят в соответствии с указаниями главы СНиП по проектированию стальных конструкций.

5.61. Расчет элементов консолей, имеющих гибкость более 200, подверженных действию осевой силы (сжатию) с изгибом, производят в соответствии с указаниями настоящих Норм.

5.62. В сжато-изогнутых элементах консолей допускаются следующие величины наибольших гибкостей:

Подкос консоли               l £ 350

Сжатая тяга                       l £ 500

Растянутая тяга                 без ограничений

5.63. Проверку устойчивости сжатых и сжато-изогнутых стержней, имеющих гибкость более 200, производят путем определения коэффициента устойчивости

,                                                    (50)

где  - критическая сила; EImin - жесткость стержня; N - расчетное продольное усилие в стержне; l - длина сжатой части стержня.

Величина коэффициента устойчивости nу < 2 не допускается.

5.64. Прочность сплошных сжато-изогнутых (и растянуто-изогнутых) стержней, имеющих гибкость более 200, проверяют по формуле:

,                                          (51)

где N, Мх, My - расчетное значение продольной силы и изгибающих моментов относительно осей х-х, у-у; Fнт - площадь нетто поперечного сечения стержня; Ix, Iу - моменты инерции сечения стержня относительно осей; х, у - координаты рассматриваемой точки сечения относительно его главных осей; m = 0,8 - коэффициент условий работы для сжато-изогнутых стержней с гибкостью более 200; R - расчетное сопротивление стали изгибу.

5.65. Сжатую тягу консоли следует рассчитывать как сжато-изогнутый элемент, сжимаемый продольной силой и изгибаемый моментом от собственного веса и моментом от продольной силы, величина последнего изменяется по мере изменения прогиба. Кроме этого, необходимо учитывать влияние эксцентриситета приложения продольной силы, обусловленного конструкцией тяги. Сжатые (жесткие) тяги применяют в тех случаях, когда при неивыгоднейшем сочетании нагрузок в тяге возникают сжимающие усилия любой величины или растягивающие усилия менее 0,5 кН.

5.66. При значениях коэффициента устойчивости 2 ³ n £ 10 максимальный изгибающий момент сжато-изогнутых стержней с гибкостью более 200 рекомендуется определять путем построения эпюры изгибающих моментов с учетом действия поперечных и продольных сил по формуле

Мx = М¢p×mp + М¢qmq + М¢мmм                                                    (52)

или

Мх = Мр + Мq + Мм,                                                           (53)

где М¢p, М¢q - текущее значение момента от поперечных сил (сосредоточенных Р и равномерно расположенных q) без учета действия продольной силы N; М¢м - значение момента от внешних сил на конец стержня (например, в точке крепления тяги к изогнутой консоли); mp, mq, тм - условные эксцентриситеты, представляющие собой отношение суммарного момента от действия поперечных и продольных сил к изгибающему моменту от поперечных сил, соответственно mp от сосредоточенной силы Р; mq - равномерно распределенной нагрузки q и mм - от момента М на конце стержня.

Значения условных эксцентриситетов в зависимости от коэффициента устойчивости пу, и от отношения  или  определяют по табл. 25, 26 и рис. 15.

Таблица 25

тр при vо

тq при vx

 

0,1

0,2

0,3

0,4

0,5

0,1-0,2

0,3-0,5

2,0

1,260

1.488

1,665

1,778

1,817

1,951

2,030

2,2

1,219

1,410

1,557

1,649

1,681

1,793

1,858

2,4

1,190

1,383

1,479

1,557

1,584

1,680

1,735

2,6

1,168

1,311

1,420

1,488

1,511

1,595

1,613

2,8

1,151

1,278

1,374

1,434

1,455

1,529

1,572

3,0

1,136

1,251

1,337

1,391

1,409

1,476

1,515

3,2

1,125

1,229

1,307

1,356

1,372

1,433

1,468

3,5

1,111

1,202

1,271

1,313

1,328

1,381

1,412

4,0

1.093

1,169

1,226

1,261

1,273

1,318

1,343

4,5

1,080

1,146

1,194

1,224

1,234

1,272

1,294

5,0

1,071

1,128

1,170

1,196

1,205

1,238

1,257

6,0

1,057

1,103

1,137

1,157

1,164

1,191

1,206

7,0

1,048

1,086

1,114

1,131

1,135

1,157

1,171

8,0

1,041

1,074

1,098

1,112

1,117

1,136

1,147

10,0

1,032

1,058

1,076

1,088

1,091

1,106

1,114

12,0

1,026

1,047

1,063

1,072

1,075

1,087

1,094

16,0

1,020

1,036

1,046

1,053

1,055

1,064

1,069

25,0

1,012

1,022

1,029

1,033

1,034

1,040

1,043

При промежуточных значениях nу и vo или уx величины mp и mq определяют по интерполяции.

5.67. Для сжато-изогнутых стержней, имеющих гибкость l > 200 и коэффициент устойчивости n > 10, суммарный максимальный изгибающий момент, как правило, находят в тех же сечениях, в которых будет максимальный изгибающий момент от поперечных сил. Так, в неизолированных изогнутых консолях, а также в консолях с обратными фиксаторными стойками максимальный изгибающий момент находят в точке крепления тяги к кронштейну консоли, а в остальных случаях - в точке крепления фиксатора к кронштейну консоли.

Для сжато-изогнутых элементов, имеющих коэффициент устойчивости n > 10, построение эпюры суммарных изгибающих моментов для определения максимального момента необязательно.

Таблица 26

mм при vx

 

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

2,0

2,769

2,701

2,590

2,439

2,252

2,036

1,795

1,538

1,270

2,2

2,462

2,407

2,3,17

2,194

2,042

1,865

1,666

1,453

1,229

2,4

2,244

2,198

2,123

2,020

1,892

1,742

1,574

1,331

1,198

2,6

2,083

2,043

1,979

1,890

1,780

1,650

1,504

1,345

1,175

2,8

1,958

1,923

1,867

1,789

1,693

1,579

1,449

1,308

1,157

3,0

1,859

1,828

1,778

1,709

1,623

1,521

1,406

1,279

1,143

3,2

1,778

1,750

1,705

1,643

1,566

1,474

1,370

1,254

1,130

3,5

1,681

1,658

1,619

1,565

1,498

1,418

1,326

1,225

1,116

4,0

1,564

1,545

1,513

1,470

1,414

1,348

1,273

1,189

1,097

4,5

1,482

1,465

1,439

1,402

1,355

1,299

1,235

1,183

1,084

5,0

1,420

1,406

1,383

1,361

1,310

1,262

1,206

1,143

1,074

6,0

1,334

1,323

1,305

1,280

1,248

1,210

1,165

1,115

1,060

7,0

1,277

1,268

1,254

1,233

1,207

1,175

1,138

1,096

1.050

8,0

1,237

1,229

1,217

1,199

1,177

1,150

1,116

1,083

1,043

10,0

1,184

1,178

1,168

1,155

1,138

1,117

1,092

1,065

1,034

12,0

1,150

1,145

1,137

1,126

1,112

1,096

1,076

1,053

1,028

16,0

1.110

1.106

1,101