Бесплатная библиотека стандартов и нормативов www.docload.ru

Все документы, размещенные на этом сайте, не являются их официальным изданием и предназначены исключительно для ознакомительных целей.
Электронные копии этих документов могут распространяться без всяких ограничений. Вы можете размещать информацию с этого сайта на любом другом сайте.
Это некоммерческий сайт и здесь не продаются документы. Вы можете скачать их абсолютно бесплатно!
Содержимое сайта не нарушает чьих-либо авторских прав! Человек имеет право на информацию!

 

ОРДЕНА ТРУДОВОГО КРАСНОГО ЗНАМЕНИ
НАУЧНО-ИССЛЕДОВАТЕЛЬСКИЙ, ПРОЕКТНО-КОНСТРУКТОРСКИЙ
И ТЕХНОЛОГИЧЕСКИЙ ИНСТИТУТ БЕТОНА И ЖЕЛЕЗОБЕТОНА
(НИИЖБ) ГОССТРОЯ СССР

Пособие
по проектированию защиты от коррозии бетонных
и железобетонных строительных конструкций

(к СНиП 2.03.11-85)

Утверждено
приказом
НИИЖБ Госстроя СССР
от
11 июня 1987 г. 51

Москва Стройиздат 1989

Рекомендовано к изданию решением секции № 4 Научно-технического совета НИИЖБ Госстроя СССР

Содержит основные положения по проектированию защиты от коррозии бетонных и железобетонных конструкций, эксплуатирующихся в агрессивных средах.

Приведены требования по защите от коррозии бетонных и железобетонных конструкций. Даны классификация степени агрессивного воздействия газообразных, твердых и жидких агрессивных сред, меры по первичной и вторичной защите от коррозии бетонных и железобетонных конструкций, защита от коррозии полов, емкостных сооружений, дымовых, газодымовых и вентиляционных труб, подземных трубопроводов, примеры технико-экономического обоснования выбора защитных мер.

Для инженерно-технических работников проектных и строительных организаций.

ПРЕДИСЛОВИЕ

Разработано к СНиП 2.03.11-85 «Защита строительных конструкций от коррозии» в части антикоррозионной защиты бетонных и железобетонных конструкций.

Пособие разработано на основе анализа и обобщения теоретических и экспериментальных исследований, натурных обследований, проведенных в последние годы с учетом накопленного опыта эксплуатации зданий и сооружений в агрессивных средах.

Содержит общие требования по защите от коррозии бетонных и железобетонных конструкций, классификацию степени агрессивного воздействия газообразных, твердых и жидких агрессивных сред, требования к материалам и конструкциям, меры по защите от коррозии надземных и подземных конструкций, защиту от коррозии полов, емкостных сооружений, дымовых, газодымовых и вентиляционных труб, подземных трубопроводов, особенности защиты железобетонных конструкций от электрокоррозии, технико-экономическое обоснование выбора защитных мер.

Приводятся примеры оценки агрессивного воздействия сред, создания коррозионно-стойких конструкций, выбора оптимальных мер защиты.

Для обеспечения ориентации при проектировании и более тесной увязки со СНиПом в пунктах и таблицах Пособия в скобках указаны соответствующие номера пунктов и таблиц СНиП 2.03.11-85. Это означает, что данный пункт или данная таблица Пособия повторяет или развивает указанный пункт или таблицу СНиПа.

Пособие разработано НИИЖБ Госстроя СССР (д-р техн. наук, проф. С.Н. Алексеев, канд. техн. наук М.Г. Булгакова, доктора техн. наук, профессора Ф.М. Иванов, Е.А. Гузеев, В.И. Агаджанов, кандидаты техн. наук П.А. Михальчук, В.Ф. Степанова, Т.Г. Кравченко, Е.С. Силина, Г.М. Красовская, А.М. Подвальный, М.М. Капкин, Н.К. Розенталь, инженеры Г.В. Любарская, С.Е. Соколова) при участии ПИ «Проектхимзащита» Минмонтажспецстроя СССР (инженеры С.К. Бачурина, С.Н. Шульженко, Т.Г. Кустова), ВНИПИТеплопроекта Минмонтажспецстроя СССР (канд. техн. наук Б.Д. Тринкер), Госхимпроекта Госстроя СССР (инж. Л.М. Волкова), ЦНИИпромзданий Госстроя СССР (канд. техн. наук Л.Л. Лемыш), Ростовского ПромстройНИИпроекта (кандидаты техн. наук А.В. Чернов, И.Н. Карлина), Уральского ПромстройНИИпроекта (канд. техн. наук М.Ф. Тихомирова), Донецкого ПромстройНИИпроекта Госстроя СССР (кандидаты техн. наук Ю.П. Чернышев, О.А. Пристромко), ЦНИИЭПсельстроя Госагропрома СССР (канд. техн. наук В.И. Новгородский).

При составлении Пособия использованы материалы ВНИИЖТ МПС СССР и НИС Гидропроекта им. Жука Минэнерго СССР.

Замечания и предложения по содержанию настоящего Пособия просим направлять в НИИЖБ по адресу: 109389, Москва, 2-я Институтская ул., д. 6.

1. ОБЩИЕ ПОЛОЖЕНИЯ

1.1. Настоящее Пособие составлено к СНиП 2.03.11-85 в части проектирования защиты от коррозии бетонных и железобетонных конструкций зданий и сооружений, подвергающихся химическому или физико-химическому воздействию агрессивных природных и производственных сред в промышленном, гидротехническом, энергетическом, транспортном, водохозяйственном, сельскохозяйственном, жилищно-гражданском и других областях строительства.

Пособие не распространяется на проектирование защиты бетонных и железобетонных конструкций от коррозии, вызванной радиоактивными веществами, зданий и сооружений, подвергающихся интенсивному тепловому воздействию, воздействию жидких сред с высокими температурами и давлениями, а также на конструкции из специальных бетонов (полимербетонов, кислотостойких, жаростойких бетонов).

Примечание. Полимербетоны и кислотостойкие бетоны рассматриваются в Пособии только как материалы для защиты от коррозии поверхностей бетонных и железобетонных конструкций.

1.2. (1.4). При проектировании зданий и сооружений необходимо предусматривать меры, снижающие воздействие агрессивных сред на строительные конструкции.

С этой целью необходимо предусматривать соответствующие виду и условиям воздействия среды решения генерального плана, объемно-планировочные и конструктивные решения; выбирать технологическое оборудование с максимально возможной герметизацией; предусматривать надежное уплотнение стыков и соединений в технологическом оборудовании и трубопроводах, а также приточно-вытяжную вентиляцию и отсосы в местах наибольшего выделения агрессивных газов, обеспечивающие удаление их из зоны конструкций или существенное уменьшение концентрации этих газов.

Здания и сооружения, являющиеся источниками агрессивных реагентов, следует располагать с подветренной стороны по отношению к зданиям, выделяющим меньшее количество реагентов.

Если годовая роза ветров не имеет ярко выраженного господствующего направления ветра, следует принимать во внимание господствующее направление ветра в теплый период года.

Размещать здания на площадке следует с учетом уровня и направления движения грунтовых вод, располагая цехи с агрессивными жидкостями на пониженных участках территории.

Технологическое оборудование, являющееся источником агрессивных реагентов, рекомендуется размещать на открытых площадках, предусматривая местные укрытия, если это допустимо по условиям эксплуатации.

Помещения с влажным или мокрым режимом работы следует изолировать от соседних помещений.

Наиболее рационально такие помещения размещать в средней части блока цехов, так как при этом снижается перенос влаги через наружные ограждающие конструкции.

В случае необходимости расположения этих помещений в крайних пролетах рекомендуется наружную стену здания с агрессивной влажной средой ориентировать так, чтобы направление господствующего ветра было параллельно наиболее протяженной стене здания.

Помещения, отнесенные к различным группам по агрессивности среды, рекомендуется разделять глухими перегородками и в случае необходимости оставлять в них проемы с воздушно-тепловыми завесами или предусматривать устройство шлюзов для обеспечения постоянства параметров воздушной среды в разделяемых помещениях.

В зданиях, совмещающих под одной крышей помещения с агрессивными и неагрессивными средами, в помещения без агрессивных сред следует подавать избыточный приток воздуха. Одновременно из помещений с агрессивными средами необходимо устраивать вытяжку, превышающую приток воздуха, подаваемого в эти помещения.

В цехах с агрессивными средами и значительными удельными тепловыделениями [84 - 125 кДж/(м3×ч)] рекомендуется устройство аэрации, а при тепловыделении более 170 кДж/(м3×ч) устройство аэрации обязательно.

При проектировании антикоррозионной защиты строительных конструкций должны учитываться гидрогеохимические и климатические условия площадки строительства, а также степень агрессивного воздействия среды, условия эксплуатации, свойства применяемых материалов и тип строительных конструкций.

Очертания конструкций и их сечения следует принимать такими, при которых исключается или уменьшается возможность застоя агрессивных газов, или скопление жидкостей и пыли на их поверхности.

В местах возможных проливов и газовых выделений следует предусматривать устройство поддонов, местных укрытий и отсосов и т.п.

Транспортирование агрессивных жидкостей предпочтительней осуществлять по закрытым каналам и трубопроводам.

1.3. Проектирование защиты строительных конструкций от коррозии рекомендуется выполнять в следующем порядке:

а) в техническом задании на проектирование объекта строительства указываются климатические и гидрогеохимические условия, технологические воздействия, условия контакта агрессивной среды и конструкций, продолжительность и периодичность агрессивного воздействия.

На основании этих данных, в соответствии с действующими нормами, устанавливаются вид и степень агрессивного воздействия сред на конструкции из разных материалов;

б) для данного вида и степени агрессивного воздействия среды согласно нормам установить дополнительные требования к материалам и конструкциям, которые должны быть учтены при ее проектировании; вид защиты.

Все данные по проектным решениям антикоррозионной защиты отражаются в разд. АК проекта.

1.4. (2.1). При проектировании бетонных и железобетонных конструкций, предназначенных для эксплуатации в агрессивной среде, их коррозионная стойкость обеспечивается средствами первичной и вторичной защиты.

К мерам первичной защиты бетонных и железобетонных конструкций относятся:

применение материалов повышенной коррозионной стойкости;

применение добавок, повышающих коррозионную стойкость бетона и его защитную способность по отношению к стальной арматуре;

снижение проницаемости бетона различными технологическими приемами;

установление дополнительных требований при проектировании бетонных и железобетонных конструкций: по категории требований к трещиностойкости и предельно допустимой ширине раскрытия трещин, толщине защитного слоя бетона у арматуры, обеспечивающих сохранность арматуры.

К мерам вторичной защиты бетонных и железобетонных конструкций относятся:

лакокрасочные покрытия;

оклеечная изоляция из листовых и пленочных материалов;

облицовки и футеровки штучными или блочными изделиями из керамики, шлакоситалла, стекла, каменного литья, природного камня;

штукатурные покрытия на основе цементных, полимерных вяжущих, жидкого стекла, битума;

уплотняющая пропитка поверхностного слоя бетона конструкций химически стойкими материалами.

1.5. Выбор способа защиты должен производиться на основании технико-экономического сравнения вариантов с учетом заданного срока службы и минимума приведенных затрат, включающих расходы на возобновление защиты, текущий и капитальный ремонты конструкций и другие связанные с эксплуатацией затраты.

Заданный срок службы конструкций, предназначенных для эксплуатации в агрессивных средах, должен обеспечиваться, в первую очередь, мерами первичной защиты.

Вторичная защита применяется в том случае, если при использовании первичной защиты не достигается требуемая долговечность конструкций.

1.6. (1.3; 2.2). Меры защиты железобетонных конструкций от коррозии должны проектироваться с учетом вида и особенностей защищаемых конструкций, технологии их изготовления, возведения и условий работы.

Защита строительных конструкций должна осуществляться преимущественно в заводских условиях на предприятиях, изготовляющих данные конструкции.

Проектирование защиты от коррозии строительных конструкций должно учитывать требования охраны окружающей среды от загрязнения.

2. СТЕПЕНЬ АГРЕССИВНОГО ВОЗДЕЙСТВИЯ СРЕД

2.1. Природные и промышленные агрессивные среды по степени воздействия на строительные конструкции подразделяются на слабоагрессивные, среднеагрессивные и сильноагрессивные.

Агрессивные среды по физическому состоянию разделяются на газообразные, твердые и жидкие.

Степень воздействия агрессивных сред на конструкции определяется:

для газообразных сред - видом и концентрацией газов (группа газов) и температурно-влажностным режимом помещений или зоной влажности территории;

для жидких сред - наличием и концентрацией агрессивных агентов, температурой, величиной напора или скоростью движения жидкости у поверхности конструкции;

для твердых сред (соли, аэрозоли, пыль, грунты) - дисперсностью, растворимостью в воде, гигроскопичностью, температурно-влажностным режимом помещений или зоной влажности.

При определении степени агрессивного воздействия среды на конструкции, находящиеся внутри отапливаемых помещений, температурно-влажностный режим следует принимать по табл. 1 СНиП II-3-79**, а на конструкции, находящиеся внутри неотапливаемых зданий, на открытом воздухе и в грунтах выше уровня грунтовых вод, - по прил. 1 СНиП II-3-79**.

2.2. (2.4). Степени агрессивного воздействия сред на конструкции из бетона и железобетона приведены:

газообразных - в табл. 1(2);

твердых сред - в табл. 2(3);

грунтов выше уровня грунтовых вод - в табл. 4(4);

жидких неорганических сред - в табл. 5(5), 6(6), 7(7);

жидких органических сред - в табл. 8(8).

В вышеуказанных таблицах приведены наиболее типичные и распространенные агрессивные среды. При наличии газообразных, жидких или твердых сред с компонентами, не указанными в таблицах, их агрессивность по отношению к бетонным или железобетонным конструкциям может устанавливаться на основании опыта эксплуатации конструкций в таких средах, а в случае отсутствия опыта - на основании консультаций специализированной научно-исследовательской организации или прямых экспериментальных исследований.

Примечание. Степень агрессивного воздействия сред может корректироваться при наличии конкретных уточняющих данных по степени ответственности сооружения, периодичности действия агрессивной среды, постоянства ее состава и концентрации, а также уровню технологии приготовления бетона и качества изготовления конструкций на конкретных предприятиях и т.п.

Таблица 1(2)

зона влажности (по СНиП II-3-79**)

Группа газов по обязательному прил. 1(1)

Степень агрессивного воздействия газообразных сред на конструкции из

бетона

железобетона

Сухой

сухая

А

Неагрессивная

Неагрессивная

В

»

»

С

»

Слабоагрессивная

D

»

Среднеагрессивная

Нормальный

нормальная

А

Неагрессивная

Неагрессивная

В

»

Слабоагрессивная

С

»

Среднеагрессивная

D

Слабоагрессивная

Сильноагрессивная

Влажный или мокрый

влажная

А

Неагрессивная

Слабоагрессивная

В

»

Среднеагрессивная

С

Слабоагрессивная

Сильноагрессивная

D

Среднеагрессивная

»

Примечания: 1. Для конструкций отапливаемых зданий, на поверхности которых допускается образование конденсата, степень агрессивного воздействия среды устанавливается как для конструкций в среде с влажным режимом помещений.

2. При наличии в газообразной среде нескольких агрессивных газов степень агрессивного воздействия среды определяется по наиболее агрессивному газу.

Таблица 2(3)

Влажностный режим помещений

Растворимость твердых сред в воде* и их гигроскопичность

Степень агрессивного воздействия твердых сред на конструкции из

зона влажности по СНиП II-3-79**

бетона

железобетона

Сухой

сухая

Хорошо растворимые, малогигроскопичные

Неагрессивная

Слабоагрессивная

Хорошо растворимые, гигроскопичные

Слабоагрессивная

Среднеагрессивная

Нормальный нормальная

Хорошо растворимые, малогигроскопичные

Слабоагрессивная

Слабоагрессивная

Хорошо растворимые, гигроскопичные

»

Среднеагрессивная

Влажный или мокрый

влажная

Хорошо растворимые, малогигроскопичные

Слабоагрессивная

Среднеагрессивная**

Хорошо растворимые, гигроскопичные

Среднеагрессивная

Сильноагрессивная

* Перечень наиболее распространенных растворимых солей и их характеристики приведены в прил. 2(2). В качестве агрессивных солей по отношению к бетону следует рассматривать хлориды, сульфаты, нитраты и нитриты, карбонаты щелочных металлов, гидроксиды натрия и калия, а по отношению к арматуре только хлориды и сульфаты. Нитриты и нитраты агрессивны к арматуре, склонной к коррозионному растрескиванию под напряжением.

** Соли, содержащие хлориды, следует относить к сильноагрессивной среде.

Таблица 3(1)

Условные обозначения показателя проницаемости бетона

Показатели проницаемости бетона

прямые

косвенные

марка бетона по водонепроницаемости

коэффициент фильтрации, см/с (при равновесной влажности), Кf

эффективный коэффициент диффузии, Д×104, см2

водопоглощение, % по массе

водоцементное отношение В/Ц, не более

Н - бетон нормальной проницаемости

W4

Св. 2×10-9 до 7×10-9

Св. 0,2 до 1

Св. 4,7 до 5,7

0,6

П - бетон пониженной проницаемости

W6

» 6×10-10 » 2×10-9

» 0,04 до 0,2

» 4,2 » 4,7

0,55

О - бетон особо низкой проницаемости

W8

» 1×10-10 » 6×10-10

до 0,04

до 4,2

0,45

Примечания: 1. Коэффициент фильтрации и марку бетона по водонепроницаемости следует определять по ГОСТ 12730.5-84; водопоглощение бетона - по ГОСТ 12730.3-78.

Для оперативного контроля водонепроницаемости бетона может быть использован прибор фильтратометр ФМ-3 (разработка Донецкого ПромстройНИИпроекта).

2. Показатели водопоглощения и водоцементного отношения, приведенные в табл. 3(1), относятся к тяжелому бетону. Водопоглощение легких бетонов следует определять умножением значений, приведенных в табл. 3(1), на коэффициент, равный отношению средней плотности тяжелого бетона к средней плотности легкого бетона. Водоцементное отношение легких бетонов следует определять умножением значения, приведенного в табл. 3(1), на 1,3.

3. Эффективный коэффициент диффузии углекислого газа в бетоне определяется по прил. 4А.

4. Далее в тексте оценка проницаемости бетона приведена по показателю водонепроницаемости.

Таблица 4(4)

Зона влажности по СНиП II-3-79**

Показатель агрессивности, мг на 1 кг грунта

Степень агрессивного воздействия грунта на бетонные и железобетонные конструкции

сульфатов в пересчете на  для бетонов на

хлоридов в пересчете на Сl- для бетонов на

портландцементе по ГОСТ 10178-85

портландцементе по ГОСТ 10178-85 с содержанием С3S не более 65 %, С3А не более 7 %, С3А + С4АF не более 22 % и шлакопортландцементе

сульфатостойких цементах по ГОСТ 22266-76*

портландцементе, шлакопортландцементе по ГОСТ 10178-85 и сульфатостойких цементах по ГОСТ 22266-76*

Сухая

Св. 500 до 1000

Св. 3000 до 4000

Св. 6000 до 12000

Св. 400 до 750

Слабоагрессивная

» 1000 » 1500

» 4000 » 5000

» 12000 » 15000

» 750 » 7500

Среднеагрессивная

» 1500

» 5000

» 15000

» 7500

Сильноагрессивная

Нормальная и влажная

Св. 250 до 500

Св. 1500 до 3000

Св. 3000 до 6000

Св. 250 до 500

Слабоагрессивная

» 500 » 1000

» 3000 » 4000

» 6000 » 8000

» 500 » 5000

Среднеагрессивная

» 1000

» 4000

» 8000

» 5000

Сильноагрессивная

Примечания: 1. Показатели агрессивности по содержанию сульфатов приведены для бетона марки по водонепроницаемости W4. При оценке степени агрессивного воздействия сульфатов на бетон марки по водонепроницаемости W6 показатели следует умножать на 1,3, для бетона марки по водонепроницаемости W8 - на 1,7.

2. Показатели агрессивности по содержанию хлоридов учитываются только для железобетонных конструкций толщиной до 250 мм.

Таблица 5(5)

Показатель агрессивности

Показатель агрессивности жидкой среды для сооружений, расположенных в грунтах с Кf свыше 0,1 м/сут, в открытом водоеме и для напорных сооружений при марке бетона по водонепроницаемости

Степень агрессивного воздействия жидкой неорганической среды на бетон*****

W4

W6

W8

Бикарбонатная щелочность, мг×экв/л (град)*

Св. 0 до 1,05(3)

-

-

Слабоагрессивная

Водородный показатель рН**

Св. 5,0 до 6,5

Св. 4,0 до 5,0

Св. 3,5 до 4,0

Слабоагрессивная

» 4,0 » 5,0

» 3,5 » 4,0

» 3,0 » 3,5

Среднеагрессивная

» 0,0 » 4,0

» 0,0 » 3,5

» 0,0 » 3,0

Сильноагрессивная

Содержание агрессивной углекислоты, мг/л, СО2агр

Св. 10 до 40

Св. 40***

-

Слабоагрессивная

» 40***

-

-

Среднеагрессивная

Содержание магнезиальных солей, мг/л, в пересчете на ион Мg2+

Св. 1000 до 2000

Св. 2000 до 3000

Св. 3000 до 4000

Слабоагрессивная

» 2000 » 3000

» 3000 » 4000

» 4000 » 5000

Среднеагрессивная

» 3000

» 4000

» 5000

Сильноагрессивная

Содержание аммонийных солей, мг/л, в пересчете на ион NН4+

Св. 100 до 500

Св. 500 до 800

Св. 800 до 1000

Слабоагрессивная

» 500 » 800

» 800 » 1000

» 1000 » 1500

Среднеагрессивная

» 800

» 1000

» 1500

Сильноагрессивная

Содержание едких щелочей, мг/л, в пересчете на ионы Nа+ и К+

Св. 50000 до 60000

Св. 60000 до 80000

Св. 80000 до 100000

Слабоагрессивная

» 60000 » 80000

» 80000 » 100000

» 100000 » 150000

Среднеагрессивная

» 8000

» 100000

» 150000

Сильноагрессивная

Суммарное содержание хлоридов, сульфатов,**** нитратов и других солей, мг/л, при наличии испаряющих поверхностей

Св. 10000 до 20000

Св. 20000 до 50000

Св. 50000 до 60000

Слабоагрессивная

» 20000 » 50000

» 50000 » 60000

» 60000 » 70000

Среднеагрессивная

» 50 000

» 60000

» 70000

Сильноагрессивная

* При любом значении бикарбонатной щелочности среда не агрессивна по отношению к бетону с маркой по водонепроницаемости W6 и более, а также W4 при коэффициенте фильтрации грунта Кf ниже 0,1 м/сут.

** Оценка агрессивного воздействия среды по водородному показателю рН не распространяется на растворы органических кислот высоких концентраций и углекислоту.

*** При превышении значений показателей агрессивности, указанных в табл. 5(5), степень агрессивного воздействия среды по данному показателю не возрастает.

**** Содержание сульфатов в зависимости от вида и минералогического состава цемента не должно превышать пределов, указанных в табл. 4(4) и 6(6).

***** Оценка агрессивности дана по отношению к бетону на любом из цементов, отвечающих требованиям ГОСТ 10178-85 и ГОСТ 22266-76*.

Примечания: 1. При оценке степени агрессивного воздействия среды в условиях эксплуатации сооружений, расположенных в слабофильтрующих грунтах с Кf менее 0,1 м/сут, значения показателей табл. 5(5) должны быть увеличены, а значения водородного показателя рН уменьшены в 1,3 раза.

Таблица 6(6)

Цемент

Показатель агрессивности жидкой среды* с содержанием сульфатов в пересчете на ионы , мг/л, для сооружений, расположенных в грунтах с Кf св. 0,1 м/сут, в открытом водоеме и для напорных сооружений при содержании ионов , мг×экв/л

Степень агрессивного воздействия жидкой неорганической среды на бетон марки по водонепроницаемости

W4**

св. 0,0 до 3,0

св. 3,0 до 6,0

св. 6,0

Портландцемент по ГОСТ 10178-85

Св. 250 до 500

Св. 500 до 1000

Св. 1000 до 1200

Слабоагрессивная

» 500 » 1000

» 1000 » 1200

» 1200 » 1500

Среднеагрессивная

» 1000

» 1200

» 1500

Сильноагрессивная

Портландцемент по ГОСТ 10178-85 с содержанием в клинкере С3S не более 65 %, С3А не более 7 %, С3А + С4АF не более 22 % и шлакопортландцемент

Св. 1500 до 3000

Св. 3000 до 4000

Св. 4000 до 5000

Слабоагрессивная

» 3000 » 4000

» 4000 » 5000

» 5000 » 6000

Среднеагрессивная

» 4000

» 5000

» 6000

Сильноагрессивная

Сульфатостойкие цементы по ГОСТ 22266-76*

Св. 3000 до 6000

Св. 6000 до 8000

Св. 8000 до 12000

Слабоагрессивная

Св. 6000 до 8000

Св. 8000 до 12000

Св. 12000 до 15000

Среднеагрессивная

Св. 8000

Св. 12000

Св. 15000

Сильноагрессивная

* При оценке степени агрессивности среды в условиях эксплуатации сооружений, расположенных в слабофильтрующих грунтах с Кf менее 0,1 м/сут, значения показателей табл. 6(6) должны быть умножены на 1,3.

** При оценке степени агрессивности среды для бетона марки по водонепроницаемости W6 значения показателей табл. 6(6) должны быть умножены на 1,3, для бетона марки по водонепроницаемости W8 - на 1,7.

Таблица 7(7)

Содержание хлоридов в пересчеты на Сl-, мг/л

Степень агрессивного воздействия жидкой неорганической среды на арматуру железобетонных конструкций при

постоянном погружении

периодическом смачивании

Св. 250 до 500

Неагрессивная

Слабоагрессивная

» 500 » 5000

»

Среднеагрессивная

» 5000

Слабоагрессивная

Сильноагрессивная

Примечания: 1. Понятие периодического смачивания охватывает зоны переменного горизонта жидкой среды и капиллярного подсоса.

2. Коррозионная стойкость конструкций, подвергающихся действию морской воды средней и сильной степени агрессивности, должна обеспечиваться мерами первичной защиты, приведенными в п. 1.4.

Таблица 8(8)

Среда

Степень агрессивного воздействия жидких органических сред на бетон при марке по водонепроницаемости

W4

W6

W8

Масла:

 

 

 

минеральные

Слабоагрессивная

Слабоагрессивная

Неагрессивная

растительные

Среднеагрессивная

Среднеагрессивная

Слабоагрессивная

животные

»

»

»

Нефть и нефтепродукты:

 

 

 

сырая нефть*

»

»

»

сернистая нефть

»

Слабоагрессивная

»

сернистый мазут*

»

»

»

дизельное топливо*

Слабоагрессивная

»

Неагрессивная

керосин*

»

»

»

бензин

Неагрессивная

Неагрессивная

»

Растворители:

 

 

 

предельные углеводороды (гептан, октан, декан и т.д.)

»

»

»

ароматические углеводороды (бензол, толуол, ксилол, хлорбензол, нитробензол и т.д.)

Слабоагрессивная

Неагрессивная

Неагрессивная

кетоны (ацетон, метилэтилкетон, диэтилкетон и т.д.)

»

Слабоагрессивная

»

Кислоты:

 

 

 

водные растворы кислот (уксусная, лимонная, молочная, адипиновая, бензосульфокислота, масляная, монохлоруксусная, муравьиная, яблочная, щавелевая и т.д.) концентрацией св. 0,05 г/л

Сильноагрессивная

Сильноагрессивная

Сильноагрессивная

жирные водонерастворимые (каприловая, капроновая, олеиновая, пальмитиновая, стеариновая и т.д.)

»

Среднеагрессивная

Среднеагрессивная

Спирты:

 

 

 

одноатомные (бутиловый, гептиловый, дециловый, метиловый, этиловый и т.д.)

Слабоагрессивная

Неагрессивная

Неагрессивная

многоатомные (глицерин, этиленгликоль и т.д.)

Среднеагрессивная

Среднеагрессивная

Слабоагрессивная

Мономеры:

 

 

 

хлорбутадиен

Сильноагрессивная

Сильноагрессивная

Среднеагрессивная

стирол

Слабоагрессивная

Слабоагрессивная

Неагрессивная

Амиды:

 

 

 

карбамид (водные растворы с концентрацией от 50 до 150 г/л)

Слабоагрессивная

Слабоагрессивная

Неагрессивная

то же, св. 150 г/л

Среднеагрессивная

Среднеагрессивная

Слабоагрессивная

дициандиамид (водные растворы с концентрацией до 10 г/л)

Слабоагрессивная

Слабоагрессивная

»

диметилформамид (водные растворы с концентрацией:

от 20 до 50 г/л)

Среднеагрессивная

»

»

то же, св. 50 г/л

Сильноагрессивная

Среднеагрессивная

Среднеагрессивная

Прочие органические вещества:

 

 

 

фенол (водные растворы с концентрацией до 10 г/л)

Среднеагрессивная

»

»

формальдегид (водные растворы с концентрацией

от 20 до 50 г/л)

Слабоагрессивная

Слабоагрессивная

Неагрессивная

то же, св. 50 г/л

Среднеагрессивная

Среднеагрессивная

Слабоагрессивная

дихлорбутан

»

»

»

тетрагидрофуран

»

Слабоагрессивная

»

сахар (водные растворы с концентрацией св. 0,1 г/л)

Слабоагрессивная

»

Неагрессивная

* Степень агрессивного воздействия к элементам конструкций резервуаров для хранения нефти и нефтепродуктов приведена в разд. 5 настоящего Пособия.

2.3. Оценка агрессивного воздействия газообразных сред по отношению к бетону определяется свойствами кальциевых солей, образующихся при взаимодействии газов с составляющими цементного камня, а по отношению к арматуре возможностью возникновения процессов коррозии арматуры при контакте растворяющихся в поровой жидкости газов или образующихся кальциевых солей с поверхностью арматуры.

Газы в порядке возрастания их агрессивности располагаются следующим образом:

1) газы, образующие при взаимодействии с гидроксидом кальция практически нерастворимые и малорастворимые соли, кристаллизующиеся с небольшим изменением объема твердой фазы. Типичными газами этой группы являются фтористый водород, фтористый кремний, фосфорный ангидрид, двуокись углерода, пары щавелевой кислоты;

2) газы, образующие слаборастворимые кальциевые соли, которые при кристаллизации присоединяют значительное количество воды. Типичными представителями второй группы газов являются сернистый и серный ангидриды, сероводород;

3) газы, которые, реагируя с гидроксидом кальция, образуют хорошо растворимые соли, обладающие высокой гигроскопичностью:

а) не вызывающие коррозии стали в щелочной среде бетона (оксиды азота, пары азотной кислоты);

б) вызывающие коррозию стали в щелочной среде бетона (хлористый водород, хлор, двуокись хлора, пары брома, иода).

Наиболее характерные по указанным признакам группы газов приведены в прил. 1(1).

Концентрация газов группы А соответствует наибольшему допустимому их количеству, содержащемуся в незагрязненном воздухе. Концентрация газов группы В соответствует количеству их в пределах от незагрязненного воздуха до предельно допустимых концентраций на рабочих местах при загрязненном воздухе.

Концентрация газов группы С и Д превышает предельно допустимые концентрации на рабочем месте в 20 и 100 раз.

Примеры пользования табл. 1(2) и прил. 1(1)

Пример 1. В цехе по производству сборных железобетонных конструкций отсутствуют выделения кислых газов, в воздухе имеется лишь нормальное количество углекислого газа - около 600 мг/м3. Относительная влажность воздуха в цехе 65 - 98 % и в среднем превышает 75 % при температуре 20 - 24 °С.

Углекислый газ указанной концентрации относится согласно прил. 1(1) к группе А.

Влажностный режим помещения по табл. 1 СНиП II-3-79** оценивается как «мокрый». При газах группы А и «мокром» режиме помещений среда классифицируется по отношению к конструкциям из бетона как неагрессивная, а из железобетона как слабоагрессивная.

Пример 2. Содержание СО2 в воздухе цеха равнялось 1500 - 1900 мг/м3, а сернистого ангидрида - 17 мг/м3; относительная влажность воздуха в отдельных зонах под покрытием составляла 75 - 99 % при температуре 30 °С. Следует определить степень агрессивного воздействия газовой среды на железобетонные конструкции цеха. Согласно прил. 1(1) углекислый газ концентрации до 2000 мг/м3 относится к группе газов А, а сернистый ангидрид концентрации 10 - 200 мг/м3 к группе С. Таким образом, более агрессивным в данном случае является сернистый ангидрид. По табл. 1 СНиП II-3-79** режим помещения «мокрый». По табл. 1(2) при мокром режиме и наличии газов группы В среда по отношению к железобетонным конструкциям оценивается как сильноагрессивная.

Пример 3. В цехе электролиза водных растворов хлористого натрия содержание хлора в воздухе под покрытием в среднем 2 мг/м3. При такой концентрации хлор относится к группе газов С. Относительная влажность воздуха в той же зоне не превышает 60 % при температуре воздуха 21 °С. По табл. 1 СНиП II-3-79** режим помещения «нормальный».

Степень агрессивного воздействия среды в цехе электролиза по отношению к железобетонным конструкциям по табл. 1(2) оценивается как среднеагрессивная.

Пример 4. В атмосфере производственного цеха присутствуют пары монохлоруксусной кислоты. В прил. 1(1) отсутствуют данные по этому веществу.

Пары монохлоруксусной кислоты при действии на бетон в качестве одного из продуктов реакции образуют хлористый кальций. Из приведенных в прил. 1(1) газов аналогичные соли образует хлористый водород.

Следовательно, действие монохлоруксусной кислоты можно приравнять к действию хлористого водорода и оценить ее агрессивность по показателям, приведенным для НСl в прил. 1(1).

2.4. Твердые среды агрессивны по отношению к железобетону только в присутствии жидкой, туманообразной или пленочной влаги.

Степень агрессивного воздействия твердых сред определяется содержанием солей, их гигроскопичностью, растворимостью, а также влажностью среды [прил. 2(2)]. Гигроскопичность зависит от равновесной упругости водяного пара над кристаллогидратами солей. Высокогигроскопичные соли имеют низкую упругость пара и, следовательно, в среде с относительной влажностью, при которой упругость водяных паров в воздухе выше равновесной, происходит поглощение солью влаги из воздуха и образование на поверхности конструкций концентрированного солевого раствора, способного оказать коррозионное воздействие.

К малорастворимым относятся соли с растворимостью менее 2 г/л, к хорошо растворимым более 2 г/л. К малогигроскопичным относятся соли, имеющие равновесную относительную влажность при температуре 20 °С 60 % и более, а к гигроскопичным - менее 60 %. Присутствие растворимых веществ не влияет на агрессивность среды.

В прил. 3 дана упругость паров воды над насыщенными водными растворами некоторых хорошо растворимых солей при температуре 20 °С.

Пример 5. Требуется определить степень агрессивного воздействия хлористого кальция для проектирования фермы производственного здания (температура в межферменном пространстве 18 °С, относительная влажность воздуха 60 %).

Хлористый кальций имеет упругость пара 819,8 Па (6,15 мм рт. ст.) (прил. 3). Равновесная упругость водяного пара при температуре 20 °С составляет 17,4 мм. Равновесная относительная влажность при температуре 20 °С составит (6,15´100)/17,4 = 35 %, т.е. менее 60 %.

Растворимость хлористого кальция составляет 745 г/л, более 2 г/л (прил. 3). Следовательно, это гигроскопичная, хорошо растворимая соль. Режим помещения по влажности (табл. 1 СНиП II-3-79**) нормальный.

По табл. 2(3) при нормальном режиме помещений по влажности хорошо растворимые гигроскопичные твердые среды по отношению к железобетону являются среднеагрессивными.

2.5. Агрессивное воздействие грунтов выше уровня грунтовых вод, а также жидких неорганических и органических сред по отношению к бетону конструкций оценивается в зависимости от проницаемости бетона.

Проницаемость бетона характеризуется прямыми показателями (маркой бетона по водонепроницаемости, коэффициентом фильтрации и эффективным коэффициентом диффузии). Косвенные показатели (водопоглощение бетона и водоцементное отношение) являются ориентировочными и дополнительными к прямым.

Проницаемость бетона конструкций, предназначенных для эксплуатации в жидких агрессивных средах, характеризуется коэффициентом фильтрации или маркой по водонепроницаемости, а в газовых средах - эффективным коэффициентом диффузии углекислого газа в бетоне.

Показатели проницаемости бетона приведены в табл. 3(1).

Примечание. В случаях, когда по ряду каких-либо причин (в элементах конструкций, работающих под давлением, при использовании бетона в качестве изолирующей оболочки от излучений и т.п.) необходимо применять бетон более высоких марок по водонепроницаемости (W10 и более), оценка степени агрессивного воздействия сред должна производиться на основании экспериментальной проверки или имеющегося практического опыта.

2.6. Оценка степени агрессивного воздействия грунтов производится для конструкций, располагающихся выше уровня грунтовых вод, по содержанию солей сульфатов и хлоридов по табл. 4(4):

по отношению к бетону конструкций только по показателю содержания сульфатов в пересчете на ;

по отношению к арматуре железобетонных конструкций толщиной до 250 мм: а) по показателю содержания хлоридов в пересчете на Сl-, б) при одновременном содержании хлоридов и сульфатов по показателю содержания Сl-, путем суммирования с содержанием сульфатов, уменьшенным в четыре раза. При этом сульфаты следует учитывать только в тех случаях, когда показатель агрессивности хлоридов в пересчете на Сl- свыше 400 для сухой и свыше 250 для нормальной и влажной зоны.

Содержание сульфатов и хлоридов в грунте определяется путем химического анализа отобранных проб грунта по водной вытяжке и выражается в мг на 1 кг сухого грунта.

Количество лабораторных определений характеристик грунтов для химического анализа следует назначать в соответствии с требованиями СНиП 1.02.07-87, а подготовку грунтов к анализу и приготовление водной вытяжки выполнять по ГОСТ 9.015-74*.

Пример 6. На участке строительства в Куйбышевской обл. грунтовые воды обнаружены на глубине 14 м. Глубина заложения железобетонного резервуара со стенками толщиной 200 мм - 7 м.

Содержание ионов  и Сl- по результатам анализа водной вытяжки грунта приведено в табл. 9.

Таблица 9

Место отбора

Глубина отбора пробы грунта, м

Сl-

 мг на 1 кг грунта

%

мг на 1 кг грунта

Скв. 301

4,0 - 4,4

0,13

1300

900

Скв. 311

6,0 - 6,5

0,17

1700

800

Скв. 313

8,8 - 9,0

0,15

1500

1100

Среднее

1500

930

Требуется произвести оценку степени агрессивного воздействия грунта по отношению к бетону и железобетону фундаментов, выполненных из бетона марки по водонепроницаемости W6 на портландцементе по ГОСТ 10178-85.

По СНиП II-3-79** район строительства относится к зоне нормальной влажности. Для бетона марки по водонепроницаемости W6 показатель агрессивности по содержанию сульфатов увеличивается в 1,3 раза [см. примеч. к табл. 4(4)]. Для среднеагрессивной среды показатели сульфатной агрессивности составят от 500×1,3 = 650 до 1000×1,3 = 1300 мг/кг; в нашем случае 650 < 930 < 1300, среда среднеагрессивная.

При содержании хлоридов, превышающих в пересчете на Cl- 250 мг/кг, следует учитывать наличие сульфатов.

Вычисляем суммарное содержание хлоридов и сульфатов в пересчете на Cl-: 1500 + 930×0,25 = 1732 мг/кг.

В зоне нормальной влажности среда по отношению к арматуре стенок железобетонного резервуара среднеагрессивна.

2.7. Оценка агрессивности природных и технологических жидких сред производится: по отношению к бетону конструкций - по табл. 5(5), 6(6), 8(8); по отношению к арматуре железобетонных конструкций - по табл. 7(7).

При наличии в жидкой среде нескольких агрессивных компонентов оценка агрессивного воздействия среды производится по наиболее агрессивному.

Степень агрессивного воздействия сред, указанных в табл. 5(5), 6(6) и 7(7), приведена для сооружений при величине напора жидкости до 10-1 МПа (1 атм).

А. При действии жидких неорганических сред на бетон коррозионные процессы подразделяются на три основных вида:

а) коррозия I вида характеризуется выщелачиванием растворимых компонентов бетона [представлена в табл. 5(5) показателем бикарбонатной щелочности)];

б) коррозия II вида - образованием растворимых соединений или продуктов, не обладающих вяжущими свойствами, в результате обменных реакций между компонентами цементного камня и жидкой агрессивной средой [представлена в табл. 5(5) водородным показателем рН, содержанием агрессивной углекислоты, магнезиальных, аммонийных солей и едких щелочей].

Оценку степени агрессивного воздействия среды по содержанию агрессивной углекислоты (см. прил. ) следует производить только при значениях рН свыше 5. При рН до 5 степень агрессивного воздействия оценивается по водородному показателю;

Примечание. Изменение рН на единицу соответствует изменению концентрации водородных ионов - кислотности на один десятичный порядок (в 10 раз).

в) коррозия III вида - образованием и накоплением в бетоне малорастворимых солей, характеризующихся увеличением объема при переходе в твердую фазу без химического взаимодействия при наличии испаряющих поверхностей [представлена в табл. 5(5) показателем суммарного содержания солей хлоридов, сульфатов, нитратов и др.] и в результате химического взаимодействия с сульфатами [представлена показателем содержания сульфатов в табл. 6(6)].

В табл. 6(6) оценка степени агрессивного воздействия сульфатов дана в зависимости от содержания бикарбонатов (в пересчете на ион HCO3-), присутствующих наряду с сульфатами в большинстве природных вод и способствующих замедлению процессов сульфатной коррозии. Положительное влияние бикарбонатов на замедление скоростей коррозионных процессов проявляется при концентрации ионов HCO3- от 3 до 6 мг×экв/л и более.

Оценку агрессивного воздействия среды при сульфатной коррозии следует производить с учетом влияния вида катионов сульфата. Показатели агрессивности табл. 6(6) для сульфатов натрия, калия, кальция, магния и никеля остаются без изменения; для сульфатов меди, цинка, кобальта, кадмия умножаются на коэффициент 1,3.

Сульфатная агрессивность жидкой среды по отношению к бетону зависит от вида применяемого цемента и проницаемости бетона. Вид цемента и проницаемость бетона могут быть заранее заданы в проекте, а могут быть назначены как средство первичной защиты бетона после анализа данных о степени агрессивности среды с учетом технико-экономических соображений.

Степень агрессивного воздействия сред, указанных в табл. 5(5) и 6(6), следует снижать на одну ступень для бетона массивных малоармированных конструкций (толщина свыше 0,5 м, процент армирования до 0,5).

В табл. 4(4), 5(5) и 6(6) значения показателей агрессивности меняются ступенчато. Вблизи границ значений показателей табл. 6(6) и 7(7) при оценке степени агрессивного воздействия среды допускается не учитывать в пределах +10 % отклонения от нормируемых величин.

Например, для бетона нормальной проницаемости на портландцементе по ГОСТ 10178-85 при фактическом содержании сульфатов до 275 мг/л среда может считаться неагрессивной.

В случаях, когда жидкая среда агрессивна по содержанию сульфатов, основным средством придания стойкости бетону является применение цементов повышенной сульфатостойкости.

Если в агрессивной жидкой среде помимо сульфатов присутствуют другие агрессивные компоненты, их воздействие следует учитывать отдельно и исходя из этого назначать способы защиты.

Б. Агрессивность жидких органических сред к бетону определяется химической активностью при взаимодействии с составляющими бетон компонентами и растворимостью в воде.

Перечень наиболее распространенных жидкостей и оценка степени их агрессивного воздействия на бетон в зависимости от его проницаемости приведены в табл. 8(8).

Примечание. При оценке агрессивного воздействия жидких органических сред, не упомянутых в табл. 8(8), следует иметь в виду способность некоторых органических сред самопроизвольно полимеризоваться, их высокую адсорбционную активность, способность к активному гидролизу с выделением газообразных веществ и др., что приводит к специфическим процессам коррозии бетона.

В. Степень агрессивного воздействия жидкой неорганической среды по отношению к арматуре железобетонных конструкций толщиной до 250 мм (трубы, стенки подвалов, резервуаров и т.п.) определяется содержанием хлоридов по табл. 7(7). Для более массивных конструкций оценка агрессивности среды, содержащей хлориды, дается только к бетону по табл. 5(5).

Агрессивность жидкой среды, содержащей сульфаты, по отношению к арматуре устанавливается только в тех случаях, когда наряду с сульфатами присутствуют хлориды в количестве свыше 250 мг/л в пересчете на Cl-. При этом оценка степени агрессивного воздействия среды производится по табл. 7(7) при условии, что количество сульфатов пересчитывается на содержание хлоридов умножением на 0,25 и суммируется с содержанием хлоридов.

Для железобетонных конструкций, подвергающихся действию жидких сред, агрессивных к бетону и арматуре, следует назначать комплекс мер первичной и вторичной защиты, обеспечивающих коррозионную стойкость железобетона в этих средах.

2.8. Оценка степени агрессивного воздействия жидких сред производится путем сопоставления данных химического анализа жидкостей или растворов с показателями предельного содержания агрессивных компонентов по табл. 4(4) - 8(8).

Для оценки агрессивности грунтовых вод необходимы следующие данные: химический анализ воды; характеристика условий контакта воды и бетона (свободное смывание, напор); коэффициент фильтрации грунта; наличие испаряющих поверхностей конструкций; температурные условия работы конструкций; предполагаемая проницаемость бетона; вид цемента, намечаемого к применению.

Примечание. Два последних параметра могут быть уточнены при оценке степени агрессивности.

Химический анализ грунтовой воды производится с помощью отбора проб воды. Места отбора проб, их количество и глубина отбора должны приниматься в соответствии с требованиями нормативных документов по инженерным изысканиям для соответствующих видов строительства (СНиП 1.02.07-87).

Пробы должны характеризовать все водоносные горизонты, воды которых будут контактировать с проектируемыми сооружениями. При этом должны быть учтены возможности: подъема уровня грунтовых вод в процессе эксплуатации проектируемых сооружений, попадания в грунт технологических растворов и изменения гидрогеохимической обстановки после возведения сооружений.

При изменении химического состава воды в зависимости от времени года для проектирования следует принимать наибольшую агрессивность за период продолжительностью не менее месяца.

При наличии нескольких результатов химического анализа из одного и того же водоносного горизонта, скважины или водоема оценка агрессивности производится по усредненным показателям химических анализов при условии, что отклонения единичных показателей от среднего значения не превышают 25 %. При большем отклонении от средних значений оценка агрессивности определяется по наиболее неблагоприятному анализу.

Срок давности анализов должен быть не более трех лет до разработки проекта и не более пяти лет до начала строительства.

По истечении указанных сроков необходимо провести повторный отбор проб для химического анализа. Если по первым данным не выявлено существенного отличия химического состава воды, число проб может быть сокращено в 2 - 3 раза.

Оценка агрессивности промышленных сточных вод производится: для вновь проектируемых предприятий на основании анализа химического состава сточных вод, указанного в технологической части проекта; для действующих предприятий - по фактическим средним данным химического состава вод за последние три месяца или на основании данных специального обследования.

Степень агрессивности жидкой среды сооружений, предназначенных для технологических жидкостей (очистные сооружения, коллекторы сточных вод и т.п.), определяется с учетом нейтрализации кислых и щелочных стоков.

Химический анализ природных вод следует выполнять в соответствии со следующим минимальным перечнем определений: сухой остаток (общее содержание солей), содержание водородных ионов - рН (кислотность), содержание агрессивной углекислоты - СО2агр., содержание ионов: HCO3-, (бикарбонатная щелочность), , Mg2+, , Cl-.

В промышленных водах дополнительно определяют общее содержание щелочей и, при необходимости, органических соединений, перечисленных в табл. 8(8).

Коэффициент фильтрации грунтов, прилегающих к сооружению, допускается принимать по справочным данным, если он не определен опытным путем. При этом к слабофильтрующим грунтам могут быть отнесены только связанные уплотненные грунты - глины и плотные суглинки.

Пример 7. Произвести оценку степени агрессивного воздействия грунтовых вод по отношению к немассивным железобетонным фундаментам, расположенным в уровне грунтовых вод и в зоне капиллярного подсоса. Коэффициент фильтрации грунтов в районе строительства Кф = 0,12 м/сут. Химический анализ грунтовой воды:

бикарбонатная щелочность, HCO3- - 3,8 мг×экв/л;

водородный показатель, рН - 6,6;

агрессивная углекислота, СО2агр. - 12 мг/л.

Содержание ионов, мг/л; Mg2+ - 1718; Са2+ - 461; nа+ + k+ - 2568; Cl- - 3546;  - 4604;

Суммарное содержание солей по сухому остатку - 14768 мг/л.

Из анализа перечисленных компонентов показателями агрессивности к бетону могут являться HCO3-, рН, СО2агр., Mg2+, nа+ + k+, , суммарное содержание солей агрессивных к арматуре - Cl- и .

Для оценки агрессивности среды по отношению к бетону запишем данные в табл. 10 и сопоставим их с показателями табл. 5(5) и 6(6), которые справедливы при коэффициенте фильтрации грунта более 0,1 м/сут.

Для оценки агрессивного воздействия среды по отношению к арматуре элементов фундаментов толщиной до 250 мм определяем суммарное содержание хлоридов и сульфатов в пересчете на Cl- и :

Cl- + 0,25 Cl-  = 3546 + 0,25×4604 = 4697 мг/л.

По табл. 7(7) определяем, что среда не агрессивна для элементов фундаментов, расположенных в уровне грунтовых вод, и среднеагрессивна - в зоне капиллярного подсоса.

Таблица 10

Химический анализ воды

Вид цемента

Степень агрессивного воздействия к бетону при проницаемости

Оценка агрессивности по таблице

Дополнительные данные

наименование

содержание

W4

W6

W8

1

2

3

4

5

6

7

8

Бикарбонатная щелочность

3,8 мг×экв/л

Любой

Неагрессивная

5(5)

Для элементов фундаментов, расположенных в уровне грунтовых вод

Водородный показатель рН

6,6

»

Неагрессивная

Свободная углекислота СО2агр

12 мг/л

»

Слабая

Неагрессивная

Магнезиальные соли Mg2+

1718 мг/л

»

»

Неагрессивная

Едкие щелочи nа+ + k+

2968 мг/л

»

Неагрессивная

Суммарное содержание солей хлоридов и сульфатов, едких щелочей (сухой остаток)

14768 мг/л

»

Слабая

Неагрессивная

5(5)

Для элементов фундаментов расположенных в зоне капиллярного подсоса

Сульфаты  (при 3,8 мг×экв/л HCO3-)

4604 мг/л

Портландцемент по ГОСТ 10178-85

Портландцемент по ГОСТ 10178-85 с содержанием минералов клинкера

Сильная

Сильная

Сильная

6(6)

Для элементов фундаментов расположенных в уровне грунтовых вод

С3S - 65 %, С3А - 7 %, С3А + С4АF - 22 % и шлакопортландцемент по ГОСТ 10178-85

Средняя

Слабая

Неагрессивная

Сульфатостойкие цементы

Неагрессивная

3. ТРЕБОВАНИЯ К МАТЕРИАЛАМ И КОНСТРУКЦИЯМ (ПЕРВИЧНАЯ ЗАЩИТА)

3.1. Для бетонных и железобетонных конструкций зданий и сооружений с агрессивными средами должны предусматриваться материалы, обеспечивающие коррозионную стойкость конструкций на весь период их эксплуатации с учетом своевременного возобновления мероприятий по защите поверхности конструкций (если таковые необходимы).

А. (2.10, 2.11). Бетон конструкций должен изготавливаться с применением следующих видов цементов:

портландцемент, портландцемент с минеральными добавками, шлакопортландцемент, удовлетворяющие требованиям ГОСТ 10178-85;

сульфатостойкие цементы, удовлетворяющие требованиям ГОСТ 22266-76*;

глиноземистый цемент, удовлетворяющий требованиям ГОСТ 969-77;

напрягающий цемент.

Выбор вида цемента должен производиться с учетом вида агрессивного воздействия.

В газообразных и твердых средах [см. табл. 1(2) и 2(3)] следует применять цементы, удовлетворяющие требованиям ГОСТ 10178-85.

В жидких и твердых средах с содержанием сульфатов [см. табл. 4(4) и 6(6)] следует применять сульфатостойкие цементы, шлакопортландцементы и портландцемент нормированного минералогического состава (С3S не более 65 %, С3А не более 7 %, С3А + С4АF не более 22 %). Не допускается применение этого цемента с отклонением от указанных требований по минералогическому составу.

В жидких средах, агрессивных к бетону по показателю бикарбонатной щелочности [см. табл. 5(5)], предпочтительнее применять портландцемент с минеральными добавками, шлакопортландцемент или пуццолановый портландцемент.

Бетоны на шлакопортландцементе и пуццолановом портландцементе обладают пониженной морозостойкостью.

В жидких средах, агрессивных к бетону по суммарному содержанию солей [см. табл. 5(5)], эффективно применение глиноземистого цемента при условии соблюдения требования к температурному режиму твердения бетона.

Не допускается применение глиноземистого цемента в средне- и сильноагрессивных по показателям Mg2+ и NH4+ жидких средах, а также в конструкциях с предварительно напряженной арматурой.

В жидких средах, агрессивных по содержанию щелочей, не допускается применение портландцемента с содержанием С3А более 8 % и глиноземистого цемента.

В конструкциях, к бетону которых предъявляются требования по водонепроницаемости марок свыше W6, наравне с сульфатостойким портландцементом допускается применение напрягающего цемента марок свыше НЦ-10.

В жидких средах, агрессивных по содержанию Mg2+ и NH4+ применение напрягающего цемента допускается после экспериментальной проверки.

Не допускается применение в агрессивных средах гипсоглиноземистых расширяющихся и водорасширяющихся (ГГРЦ и ВРЦ) цементов для изготовления железобетонных конструкций и замоноличивания армированных стыков.

В одной железобетонной конструкции не должны применяться цементы различных видов.

Инъецирование каналов предварительно напряженных конструкций с натяжением арматуры на бетон должно производиться раствором только на портландцементе.

Б (2.12, 2.13). В качестве мелкого заполнителя для бетона следует предусматривать кварцевый песок (отмучиваемых частиц не более 1 % по массе по ГОСТ 10268-80, а также пористый песок, отвечающий требованиям ГОСТ 9759-83.

При отсутствии местных крупных песков имеющиеся пески должны обогащаться искусственными или крупными песками других месторождений.

Применение чистых мелких песков с модулем крупности не менее 1,7 допускается при соответствующем технико-экономическом обосновании.

В качестве крупного заполнителя для тяжелого бетона следует предусматривать фракционированный щебень изверженных пород, гравий и щебень из гравия, отвечающие требованиям ГОСТ 10268-80. Следует использовать щебень изверженных пород марки не ниже 800, гравий и щебень из гравия - не ниже Др12.

Щебень из осадочных пород (водопоглощением не выше 2 % и марки не ниже 600), если они однородны и не содержат слабых прослоек, допускается применять для конструкций, эксплуатируемых в газообразных, твердых и жидких средах при любой степени агрессивного воздействия [кроме жидких сред, имеющих водородный показатель ниже, чем в слабоагрессивной среде, см. табл. 5(5)].

Для конструкционных легких бетонов следует предусматривать заполнители по ГОСТ 9757-83.

При этом показатели водопоглощения по массе в течение 1 ч не должны превышать для: естественных пористых заполнителей 12 %, искусственных - 25 %.

При применении в качестве заполнителей отходов промышленности (например, золы, золошлаковые смеси, металлургические шлаки и т.д.) необходима проверка коррозионной стойкости бетонов на этих заполнителях к агрессивным воздействиям (сульфатостойкости, морозостойкости, кислотостойкости и т.д.), а также оценка пассивирующего действия бетона к стальной арматуре.

В (2.15). Воду для затворения бетонной смеси необходимо применять в соответствии с ГОСТ 23732-79.

Применение морской воды допускается для затворения бетона неармированных или малоармированных конструкций при отсутствии требований к появлению высолов; болотные и сточные воды не допускаются к применению.

Допускается применять воду с содержанием эмульгированных масел в количестве до 20 мг/л (например, конденсат пропарочных камер). При этом не допускается применение воды с пленкой масла на ее поверхности.

3.2. (2.14). Мелкий и крупный заполнители должны быть проверены на содержание потенциально реакционноспособных (ПРС) пород, характеризующихся содержанием активного кремнезема.

Реакционноспособный кремнезем заполнителя при взаимодействии с водорастворимыми щелочами, содержащимися в бетоне (в цементе, добавках, воде затворения), образует соединения, вызывающие внутренние напряжения, приводящие к разрушению бетона.

Потенциальная реакционная способность заполнителей должна устанавливаться на стадии геологического опробования месторождений горных пород, предназначенных для применения в качестве заполнителей бетона, и определяться химическим методом по ГОСТ 8735-75 и ГОСТ 8269-87 (заполнители относятся к ПРС, если количество растворимого кремнезема превышает 50 ммоль/л), а также до начала строительства прямым методом измерения деформаций образцов бетона во времени по «Рекомендациям по определению реакционной способности заполнителей бетона со щелочами цемента» (М., НИИЖБ, 1972).

Примечание. Наиболее опасно содержание ПРС кремнезема в виде частиц свыше 5 мм, тонкодисперсный кремнезем в виде природных или искусственных активных минеральных добавок к цементу (трепел, опока, туф, пылевидный кремнезем и т.п.) наоборот способствует связыванию щелочей и снижает опасность внутренней коррозии бетона. Аналогичный эффект достигается введением тонкомолотого доменного гранулированного шлака или применением шлакопортландцемента.

При наличии ПРС кремнезема условия возникновения коррозии бетона зависят от содержания щелочей, определяемого в расчете на Na2O (содержание К2О приводится к содержанию Na2O умножением на 0,65), и влажности бетона в процессе эксплуатации конструкций.

Допустимое содержание щелочей в цементе в зависимости от расхода цемента приведено в табл. 11.

Таблица 11

Содержание щелочей в цементе, %

0,6

0,7

0,8

0,9

1,0

1,1

1,2

Максимально допустимый расход портландцемента в бетоне, кг/м3

500

400

375

330

300

270

250

В случае применения в качестве вяжущего пуццоланового портландцемента в соответствии с ГОСТ 22266-76* ограничения по применению ПРС заполнителей снимаются.

В качестве мер защиты от внутренней коррозии за счет потенциально реакционноспособных пород и снижения взаимодействия заполнителя со щелочами цемента следует предусматривать:

подбор состава бетона при минимальном расходе цемента;

изготовление бетона на цементах с содержанием щелочи в расчете на Na2О не более величин, приведенных в табл. 11;

изготовление бетона на портландцементах с минеральными добавками, пуццолановом портландцементе и шлакопортландцементе;

введение в состав бетона воздухововлекающих и газовыделяющих добавок.

При потенциально реакционноспособных заполнителях не допускается введение в бетон в качестве добавок солей натрия или калия.

3.3. (2.16). Повышение коррозионной стойкости железобетонных конструкций в агрессивных средах может достигаться применением химических добавок, повышающих коррозионную стойкость и защитную способность бетона по отношению к стальной арматуре.

При применении добавок следует руководствоваться «Пособием по применению химических добавок при производстве сборных железобетонных изделий и конструкций» (М.: Стройиздат, 1987), «Каталогом выпускаемых в СССР добавок для бетонов и строительных растворов» (М., 1986) и требованиями настоящего раздела.

Коррозионная стойкость бетона повышается добавками за счет: упорядочения структуры; гидрофобизации стенок пор и капилляров; уменьшения структурной пористости; обеспечения однородности смеси при укладке; придания бетону специальных свойств и т.п.

В зависимости от вида коррозионного воздействия агрессивной среды с целью повышения стойкости конструкций следует применять добавки:

для повышения морозостойкости бетона - воздухововлекающие, пластифицирующие-воздухововлекающие, газообразующие, гидрофобизирующие-воздухововлекающие, гидрофобизирующие-газовыделяющие;

для повышения стойкости бетона при воздействии солей, в том числе в условиях капиллярного подсоса и испарения - те же, что для повышения морозостойкости, гидрофобизирующие, суперпластификаторы, пластифицирующие и уплотняющие;

для повышения непроницаемости бетона - уплотняющие, суперпластификаторы, пластифицирующие, пластифицирующие-воздухововлекающие, гидрофобизирующие-воздухововлекающие, воздухововлекающие;

для повышения защитного действия по отношению к стальной арматуре - ингибиторы коррозии стали: НН, ННК - для конструкций, предназначенных для эксплуатации в слабоагрессивных средах; НН + ТБН, НН + БХН, НН + БХК - для конструкций, предназначенных для эксплуатации в средне- и сильноагрессивных средах;

для повышения однородности и связности бетонной смеси - стабилизирующие, пластифицирующие-воздухововлекающие, воздухововлекающие, гидрофобизирующие-воздухововлекающие.

Ориентировочные свойства бетонов с химическими добавками приведены в прил. 5.

В состав бетона, в том числе в составы вяжущего, заполнителей и воды затворения, не допускается введение хлористых солей, вызывающих коррозию арматуры в железобетонных конструкциях: с напрягаемой арматурой; с ненапрягаемой проволочной арматурой класса В-I, Вр-I диаметром 5 мм и менее; эксплуатируемых в условиях влажного или мокрого режима; изготовляемых с автоклавной обработкой; подвергающихся электрокоррозии.

Не допускается также введение хлористых солей в состав бетонов и растворов для инъецирования каналов, а также для замоноличивания швов и стыков сборных и сборно-монолитных конструкций.

Допускаемые области применения добавок, оказывающих влияние на коррозионное поведение арматуры в бетоне, приведены в прил. 5.

3.4. (2.9). К бетонным и железобетонным конструкциям, эксплуатирующимся при воздействии отрицательных температур, должны предъявляться требования по морозостойкости.

Марка бетона по морозостойкости F в зависимости от конструкций и условий эксплуатации назначается:

в отсутствие воздействия жидких агрессивных сред или при воздействии жидких агрессивных сред в виде растворов хлоридов сульфатов, нитратов и других солей-электролитов в количестве до 5 г/л включительно по СНиП 2.03.01-84 «Бетонные и железобетонные конструкции», СНиП 2.05.03-84 «Мосты и трубы», СНиП 2.05.02-85 «Автомобильные дороги», СНиП 2.05.08-85 «Аэродромы», СНиП 2.06.08-87 «Бетонные и железобетонные инструкции гидротехнических сооружений»;

при воздействии названных выше жидких агрессивных сред в количестве свыше 5 г/л по табл. 12 настоящего Пособия, но не менее значений, приведенных в нормативных документах, перечисленных выше.

При этом указанные выше марки бетона по морозостойкости определяются по ГОСТ 10060-87 при испытании в пресной воде.

3.5. (2.18; 2.22 - 2.24). Для армирования железобетонных конструкций, эксплуатируемых в агрессивных средах, допускается применять те же виды арматуры, что и для конструкций, эксплуатируемых в неагрессивных условиях по СНиП 2.03.01-84 с учетом требований настоящего раздела.

Арматурные стали по степени опасности коррозионного повреждения подразделяются на три группы [табл. 13(9)].

При выборе арматурной стали необходимо учитывать следующие положения:

в предварительно напряженных конструкциях следует преимущественно применять термически упрочненную арматуру, стойкую против коррозионного растрескивания, высокопрочную проволочную арматуру класса В-II и Вр-II диаметром 4 мм и более, арматурные канаты К-7 диаметром 12 мм и более, обеспечивающие наряду с коррозионной стойкостью экономию стали;

арматурные канаты следует предусматривать из проволоки диаметром не менее 2,5 мм в наружных и не менее 2 мм - во внутренних слоях;

применение проволоки классов В-I и Вр-I диаметром менее 4 мм не допускается в конструкциях третьей категории требований к трещиностойкости;

в предварительно напряженных железобетонных конструкциях, изготовленных из шлакопемзобетона или с применением шлакопортландцемента, рекомендуется преимущественно применять термически и термомеханически упрочненную арматуру, стойкую против коррозионного растрескивания;

не рекомендуется применять арматуру класса Ат-IIIc, упрочненную вытяжкой;

арматуру класса Ат-IIICH (Н - немерные длины) не рекомендуется использовать.

Применение высокопрочной проволочной арматуры в предварительно напряженных конструкциях из ячеистых, пористых легких и тяжелых силикатных бетонов не допускается без специальных мер защиты независимо от условий эксплуатации. Возможно применение высокопрочной проволоки при армировании предварительно напряженными железобетонными брусками из тяжелого бетона.

Предварительно напряженные конструкции для зданий с агрессивными средами не допускается изготавливать способом натяжения арматуры на затвердевший бетон.

В конструкциях, предназначенных к эксплуатации в агрессивных условиях, сварные стыки арматурных стержней рекомендуется располагать «вразбежку». Площадь поперечного сечения стержней, стыкуемых в одном сечении, не должна превышать 25 % площади общего сечения.

3.6 (2.17). Расчет железобетонных конструкций, подверженных воздействию агрессивных сред, следует производить по СНиП 2.03.01-84 с учетом настоящих норм по категории требований к трещиностойкости и предельно допустимой ширине раскрытия трещин, которые ужесточаются с повышением степени агрессивного воздействия среды.

Допустимая ширина раскрытия трещин назначается из условий долговечности и непроницаемости и обусловливается степенью агрессивного воздействия среды, длительностью действия внешней нагрузки и видом применяемой арматуры.

В агрессивной газовой среде ограничение ширины раскрытая трещин вызвано, главным образом, опасением коррозии арматуры, а так как коррозионные процессы протекают во времени, то при назначении ширины раскрытия трещин контролирующим фактором является длительность воздействия нагрузки, вызывающей трещины в конструкции.

В связи с этим ограничиваются два значения предельно допустимой ширины раскрытия трещин.

В конструкциях третьей категории требований к трещиностойкости первое значение ограничивает непродолжительное раскрытие трещин, соответствующее раскрытию трещин при совместном действии постоянных, длительных и кратковременных нагрузок. Второе значение ограничивает продолжительное раскрытие трещин, соответствующее раскрытию трещин при действии только постоянных и длительных нагрузок.

Таблица 12

Условия работы изделий и конструкций

Суммарное содержание хлоридов, сульфатов, нитратов и других солей в воде - среде, г/л

Характеристика режима эксплуатации

Расчетная зимняя температура наружного воздуха

от 5 до 35 и св. 70

oт 35 до 70 вкл.

Минимальные проектные марки бетона по морозостойкости F конструкций для зданий и сооружений класса ответственности

I

II

III

I

II

III

Попеременное замораживание и оттаивание:

Ниже минус 40 °С

400

300

200

500

400

300

в водо-, соленасыщенном состоянии (например, конструкции, расположенные в зоне переменного горизонта воды, в сезоннооттаивающем слое грунта в районах вечной мерзлоты и т.п.)

Ниже минус 20 °С до минус 40 °С вкл.

300

200

150

400

300

200

Ниже минус 5 °С до минус 20 °С вкл.

200

150

100

300

200

150

Минус 5°С и выше

150

100

75

200

150

100

в условиях эпизодического водо-, соленасыщения (надземные конструкции, постоянно находящиеся в контакте с грунтом и подвергающиеся атмосферным воздействиям и попаданию солей, например, нижние части опор ЛЭП, эстакад и т.п.)

Ниже минус 40 °С

300

200

150

400

300

200

Ниже минус 20 °С до минус 40 °С вкл.

150

100

100

300

200

150

Минус 20 °С и выше

100

75

75

200

150

100

Примечания: 1. Расчетная зимняя температура наружного воздуха принимается как средняя температура воздуха наиболее холодной пятидневки по СНиП 2.01.01-82.

2. Марка бетона по водонепроницаемости должна приниматься не менее W4 и назначаться исходя из условий стойкости бетона в жидкой агрессивной среде по табл. 4(4), 5(5), 6(6) и 8(8).

3. Марки бетона по морозостойкости, указанные в табл. 12, приведены к определению по первому методу ГОСТ 10060-87.

4. Табл. 12 не распространяется на бетоны дорожных и аэродромных покрытий.

В конструкциях второй категории требований к трещиностойкости допускается непродолжительное раскрытие трещин при условии обеспечения надежного закрытия (зажатия) трещин при длительно действующих нагрузках. При этом на растягиваемой внешними постоянными и длительными нагрузками грани элемента обжатие должно составлять не менее 0,5 МПа.

В конструкциях первой категории требований к трещиностойкости раскрытие трещин не допускается.

При эксплуатации конструкций в агрессивных средах предельно допустимая ширина раскрытия трещин контролируется также условиями непроницаемости, особенно для жидких агрессивных сред.

При определении ширины непродолжительного раскрытия трещин допускается:

принимать ветровую нагрузку в размере 30 % нормативного значения;

учитывать крановую нагрузку от одного мостового или подвесного крана на каждом крановом пути. При этом ширина непродолжительного раскрытия трещин от нагрузок, предусмотренных СНиП 2.01.07-85, не должна превышать значений, нормируемых СНиП 2.03.01-84.

Примечание. При расчете сооружений типа башен, дымовых труб, опор ЛЭП, мачт, для которых ветровая нагрузка является определяющей, ветровую нагрузку необходимо учитывать полностью.

3.7. Категория требований к трещиностойкости, значения предельно допустимой ширины непродолжительного и продолжительного раскрытия трещин, толщина защитного слоя бетона, минимальные марки бетона по водонепроницаемости для конструкций, предназначенных к эксплуатации в газообразных и твердых агрессивных средах, приведены в табл. 13(9) и 14(10); в жидких агрессивных средах - в табл. 15(11).

Условия, определяющие необходимость защиты поверхностей конструкций, и варианты защитных мер приведены в разд. 4.

Категория требований к трещиностойкости и предельно допустимая ширина непродолжительного и продолжительного раскрытия трещин железобетонных конструкций, приведенные в табл. 13(9) и 15(11), увязаны с требованиями по толщине защитного слоя бетона и маркой бетона по водонепроницаемости.

В конкретном проектировании можно учитывать взаимозаменяемость отдельных параметров первичной защиты, в том числе роль защиты арматуры оцинкованием, некоторые особенности конструктивного характера и т.п.

При надлежащем технико-экономическом обосновании можно учитывать следующие положения.

Таблица 13(9)

Арматурная сталь групп

Арматурная сталь классов

Категория требований к трещиностойкости железобетонных конструкций и предельно допустимая ширина непродолжительного и продолжительного раскрытия трещин, мм при степени агрессивного воздействия газообразной и твердой среды на железобетон*

слабоагрессивная

среднеагрессивная

сильноагрессивная

I

А-I, А-II, А-III, В-I, Вр-I

A-IIIв, A-IV, Ат-IVк

Ат-III, Ат-IIIC

Не допускается к применению

Не допускается к применению

II

Ат-IVC, Ат-VCK, Ат-VIK

1

В-II, Вр-II, К-7, К-19

1

III

A-V, A-VI, Ат-V, Ат-VI

1

Не допускается к применению

В-II, Вр-II, К-7, К-19 при диаметре проволок менее 3,5 мм

1

1

* Над чертой приведена категория требований к трещиностойкости: под чертой - допустимая ширина непродолжительного и продолжительного (в скобках) раскрытия трещин.

** Конструкции должны быть отнесены к 1-й категории требований по трещиностойкости при наличии сред, содержащих хлор, пыль хлористых, азотнокислых и роданистых солей, хлористый водород, сероводород.

*** В случае, когда среднеагрессивная степень воздействия определяется только влажностью и наличием углекислого газа, категорию требований по трещиностойкости и ширине раскрытия трещин допускается принимать как слабоагрессивную среду.

Примечания: 1. Табл. 13(9) необходимо пользоваться совместно с табл. 18(13).

2. Термически упрочненная стержневая арматура с индексами «К» является стойкой против коррозионного растрескивания, «С» - свариваемой, «СК» - свариваемой, стойкой против коррозионного растрескивания.

Таблица 14(10)

Арматурная сталь групп [см. табл. 13(9)]

Толщина защитного слоя бетона для сборных конструкций и элементов, мм (над чертой), и марка по водонепроницаемости бетона (под чертой) при степени агрессивного воздействия газообразной и твердой среды

слабоагрессивной

среднеагрессивной

сильноагрессивной

I

20

W4

20

W6

25

W8

II

25

W4

25

W6*

25

W8

III

25

W6*

25

W8

25

W8

* При проволочной арматуре классов В-II, Вр-II, К-7 и К-19 следует предусматривать применение бетона марки W8.

Примечание. См. примеч. 1 к табл. 13(9).

Увеличение толщины защитного слоя бетона несколько снижает опасность возникновения коррозии арматуры в трещинах ограниченного раскрытия. При увеличении толщины защитного слоя бетона на 10 мм и более сверх значений, указанных в табл. 14(10) и 15(11), допускается для арматурной стали I и II групп увеличить предельно допустимую ширину непродолжительного и продолжительного раскрытия трещин на 10 %.

При применении оцинкованной арматуры требования табл. 13(9), 14(10), 15(11) допускается корректировать следующим образом:

снижать водонепроницаемость бетона на одну марку (при этом марка должна быть не менее W4), или уменьшать толщину защитного слоя бетона на 5 мм, или увеличивать предельно допустимую ширину непродолжительного и продолжительного раскрытия трещин для конструкций с арматурной сталью I и II групп на 15 %.

При применении в конструкциях арматурных сталей I группы большого диаметра допускается увеличивать предельно допустимую ширину непродолжительного и продолжительного раскрытия трещин для диаметров 28 - 32 мм на 10 %, а для диаметров свыше 36 мм - на 15 %.

Таблица 15(11)

Степень агрессивного воздействия среды по табл. 4(4), 7(7), 8(8)**

Требования к железобетонным конструкциям при воздействии жидких агрессивных сред

категория требований к трещиностойкости и предельно допустимая ширина непродолжительного и продолжительного раскрытия трещин*, мм, в зависимости от группы арматурной стали [см. табл. 13 (9)]

толщина защитного слоя не менее, мм

марки по водонепроницаемости бетона, не менее, в зависимости от группы арматурной стали [см. табл. 13 (9)]

I

II

III

I

II

III

Слабоагрессивная

20

W4

W6

W6

Среднеагрессивная

30

W6

W6

W6

Сильноагрессивная

Не допускается к применению

30

W6

W6

-

* Над чертой - категория требований к трещиностойкости, под чертой - допустимая ширина непродолжительного и продолжительного (в скобках) раскрытия трещин.

** Степень агрессивности жидкой среды по табл. 8(8) следует учитывать только для сырой и сернистой нефти и сернистого мазута.

*** Сталь класса Ат-IIIC не допускается к применению.

Примечания: 1. Табл. 15(11) необходимо пользоваться совместно с табл. 18(13).

2. Требования настоящей таблицы не распространяются на проектирование железобетонных труб для подземных трубопроводов.

В случаях одновременного изменения нескольких параметров первичной защиты (повышение толщины защитного слоя бетона, применение оцинкования и арматурных стержней большого диаметра) увеличение предельно допустимой ширины непродолжительного и продолжительного раскрытия трещин не должно превышать 30 % значений, нормируемых табл. 13(9) и 15(11), при этом ширина раскрытия трещин не должна превышать значений, указанных в СНиП 2.03.01-84.

Если при проектировании нет уверенности, что предложенные отступления от требований табл. 13(9) - 15(11) будут выполнены, то в проекте непременно должны присутствовать чертежи конструкций, рассчитанных по требованиям табл. 13(9) - 15(11). Особенно это положение необходимо учитывать при разработке чертежей типовых конструкций.

Примеры пользования табл. 13(9) - 15(11) приведены ниже.

Пример 1. Условия приняты по примеру 3 разд. 2.

Требуется определить проектные требования для предварительно напряженных железобетонных ферм, армированных стержневой арматурой класса А-IV, принятых в качестве несущей конструкции покрытия цеха электролиза водных растворов хлористого натрия. Среда цеха - среднеагрессивная.

По табл. 13(9) для среднеагрессивной среды находим, что нижний пояс фермы, армированный сталью масса A-IV I группы, должен рассчитываться как элемент третьей категории требований к трещиностойкости. Предельно допустимая ширина непродолжительного раскрытия трещин в нижнем поясе не должна превышать 0,15 мм, а при длительно действующих нагрузках должна быть не более 0,1 мм. Величина защитного слоя бетона до поверхности арматуры по табл. 14(10) составляет 20 мм, бетон марки по водонепроницаемости W6.

Элементы решетки и верхнего пояса фермы, выполненные без предварительного напряжения арматуры, рассчитываются как элементы третьей категории требований к трещиностойкости с предельно допускаемой шириной непродолжительного раскрытия трещин не более 0,2 мм, а продолжительного раскрытия трещины не более 0,15 мм. Защитный слой для элементов решетки и верхнего пояса ферм должен приниматься не менее 20 мм, бетон марки по водонепроницаемости W6.

Поверхностная защита фермы назначается в соответствии с требованиями разд. 4.

3.8 (2.20). Толщина защитного слоя бетона в конструкциях для агрессивных сред определяется как минимальное расстояние от поверхности конструкции до поверхности любого ближнего арматурного стержня. При этом защитный слой бетона в конструкциях должен быть не менее величин, указанных в СНиП 2.03.01-84.

Минимальную толщину защитного слоя бетона конструкций полок ребристых плит и полок стеновых панелей допускается принимать равной 15 мм для слабоагрессивной и среднеагрессивной степеней воздействия газообразной среды и равной 20 мм - для сильноагрессивной степени независимо от класса арматурных сталей.

Минимальную толщину защитного слоя монолитных конструкций следует принимать на 5 мм более значений, указанных в табл. 14(10), 15(11).

Для торцов поперечных и продольных стержней арматурных каркасов толщина защитного слоя бетона до арматуры должна быть не менее 10 мм.

Толщина защитного слоя бетона у арматуры второстепенных ребер плит может приниматься не менее величины защитного слоя полок этих плит.

Защитный слой бетона до арматуры или стальных закладных деталей в замоноличиваемых узлах конструкций, а также проницаемость бетона должны удовлетворять требованиям табл. 14(10) и 15(11).

При невозможности выполнения этого условия следует предусматривать защиту арматуры и стальных закладных деталей, находящихся в пределах стыка, металлическими покрытиями.

Для обеспечения требуемой толщины защитного слоя бетона и проектного положения арматуры следует предусматривать установку под арматуру специальных прокладок из пластмассы, полиэтилена, капрона и др. или из плотного цементно-песчаного раствора.

При использовании пластмассовых фиксаторов следует учитывать возможность образования трещин в растянутой зоне бетона и коррозии арматуры в агрессивных средах.

Уменьшить опасность коррозии арматуры можно применением фиксаторов, конструкция которых уменьшает возможность образования трещин, например, фиксаторов с развитой боковой поверхностью, а также фиксаторов из цементно-песчаного раствора (состава 1:1,5 или 1:2 с В/Ц = 0,5), проницаемость которого должна быть не выше проницаемости бетона конструкции.

К фиксаторам предъявляются также следующие общие требования: легкость установки, устойчивость в рабочем положении, способность выдерживать без деформаций вес арматурного каркаса и нагрузок от бетонной смеси при заполнении формы.

3.9 (2.25; 2.26). Применение конструкционных легких бетонов в несущих конструкциях, предназначенных для эксплуатации в агрессивных средах, допускается при условии соответствия бетонов требованиям норм по проницаемости и способности пассивировать стальную арматуру. Марка легких бетонов по водонепроницаемости должна удовлетворять требованиям табл. 14(10) и 15(11).

Для бетонов на пористых заполнителях допускается отклонение показателя водопоглощения в большую сторону от значений, приведенных в табл. 3(1) при условии соответствия по проницаемости бетонам по прямым показателям (для жидких сред по показателю водонепроницаемости и коэффициенту фильтрации, для газообразных сред - по эффективному коэффициенту диффузии).

При этом водопоглощение по объему не должно превышать 14 %.

Косвенным показателем проницаемости легких бетонов также является «истинное» водоцементное отношение, которое определяется как отношение разности количества воды затворения бетона и количества воды, поглощаемой пористым заполнителем в течение 1 ч, к массе цемента.

«Истинное» водоцементное отношение для легких бетонов марок по водонепроницаемости W4, W6 и W8 не должно превышать соответственно 0,5; 0,4 и 0,35.

В случаях, когда нет возможности экспериментальной проверки «истинного» В/Ц, показатель В/Ц принимается по табл. 3(1) с учетом примеч. 2.

Пассивирующая способность бетона на пористых заполнителях может быть снижена за счет гидравлической активности самого заполнителя, усиливающейся при тепловой обработке, особенно при автоклавном твердении.

Гидравлическая активность заполнителя зависит от химического состава и крупности зерен заполнителя. Определяющим в химическом составе заполнителя является содержание активных алюминатов Аl2O3 и двуокиси кремния SiO2. Наибольшей активностью обладают мелкие фракции пористого заполнителя £ 0,3 мм.

Гидравлическая активность мелкого пористого заполнителя устанавливается ускоренным методом, приведенным в прил. 6. Мелкий пористый заполнитель по гидравлической активности подразделяется на три группы в соответствии с табл. 16.

Таблица 16

Группа заполнителя по гидравлической активности

Характеристика гидравлической активности мелкого пористого заполнителя

Количество СаО, мг, связанное 1 г материала в процессе термообработки (прил. 6)

Рекомендуемые виды цементов

Минимальное содержание алита в клинкере портландцемента, %

Минимально допустимый расход цемента, кг/м3*

I

Слабоактивные

Св. 40 до 50

Все цементы, отвечающие требованиям ГОСТ

-

220

II

Среднеактивные

Св. 50 до 75

Портландцемент, шлакопортландцемент, пуццолановый, напрягающий цемент

40

250

III

Сильноактивные

Св. 75

Портландцемент

60

300

* Расход цемента в зависимости от состава бетона и активности заполнителей определяется расчетом.

Для обеспечения первичного (на стадии изготовления и твердения) пассивирующего действия бетона для средне- и сильно-гидравлически активного мелкого заполнителя необходимо рассчитывать минимальное количество цемента по формуле

Ц = КSПа100/(0,43aС3S + 0,11bС2S),

где содержание С3S и С2S в %; К - коэффициент запаса, принимаемый 1,25; П - количество отдельных фракций активных заполнителей, кг/м3 бетона; а - количество СаО, которое может быть связано 1 кг заполнителя различных фракций, кг/кг; a и b - степень гидратации алита и белита к моменту окончания термообработки бетона (принимается соответственно 0,8 и 0,6); С2S учитывается при количествах свыше 25 %.

Пример 2. В 1 м3 бетона содержится 354 кг пористого песка. Гидравлическая активность (средняя по фракциям), определенная по прил. 6, составила 120 мг/г, т.е. 1 кг пористого песка связывает 0,12 кг СаО. Количество С3S в цементе 62 %, С2S - 17 %. Отсюда по формуле

Ц = 100×1,25×354×0,12/(0,43×0,8×62) = 249 кг.

При принятых в расчете параметрах такое содержание цемента обеспечит первичную пассивность арматурной стали в бетоне.

3.10 (2.27). Конструктивно-теплоизоляционные легкие и ячеистые бетоны в ограждающих конструкциях зданий с агрессивными средами имеют ограниченную область применения. Область применения и требования к таким конструкциям приведены в табл. 17(12).

Таблица 17(12)

Степень агрессивного воздействия среды в помещении

Требования к защите ограждающих конструкций

из легких бетонов (плотной и поризованной структур)

из ячеистых бетонов автоклавного твердения на цементном или смешанном вяжущем

Слабоагрессивная

Применение конструкций допускается при наличии изолирующего слоя из тяжелого или легкого конструкционного бетона со стороны воздействия агрессивной среды

Применение конструкций допускается при защите арматуры специальными покрытиями и поверхности бетона пароизолирующим лакокрасочным покрытием

Среднеагрессивная

Применение конструкций допускается при наличии изолирующего слоя из тяжелого или легкого конструкционного бетона с лакокрасочным покрытием со стороны воздействия агрессивной среды

Не допускается к применению

Сильноагрессивная

Не допускается к применению

То же

Примечания: 1. Марка по водонепроницаемости изолирующего слоя из тяжелого или легкого конструкционного бетона должна соответствовать требованиям табл. 14(10).

2. Группы лакокрасочных покрытий приведены в табл. 18(13).

В зданиях с влажным или мокрым режимом помещений при наличии в качестве агрессивного компонента только углекислого газа (например, производственные помещения животноводческих зданий) допускается применение ограждающих конструкций из легких и ячеистых бетонов с защитными мерами, как для слабоагрессивной среды, табл. 17(12).

Кроме того, в конструкциях из легких бетонов можно заменить изолирующий слой на фактурный (однослойные конструкции) при толщине защитного слоя бетона не менее 30 мм.

При этом необходимо применять следующие дополнительные защитные меры:

в слабоагрессивной среде в бетонную смесь следует вводить ингибиторы коррозии стали или наносить на поверхность конструкции со стороны помещения цементно-латексное покрытие толщиной 2 мм;

в среднеагрессивной среде защиту конструкций следует осуществлять одним из следующих способов: введением в бетонную смесь ингибиторов коррозии стали с гидрофобизацией внутренней поверхности конструкций кремнийорганическими жидкостями; цементно-латексным покрытием конструкций со стороны помещения толщиной 3 мм; защитой стальной арматуры специальными обмазками при гидрофобизации внутренней поверхности конструкций кремнийорганическими жидкостями.

3.11 (2.28). Конструкции из армоцемента допускается применять в слабоагрессивной газообразной и твердой средах. В газообразной среде толщина защитного слоя должна быть не менее 4 мм, водопоглощение бетона - не более 8 % при защите арматурных сеток и проволок цинковым покрытием толщиной не менее 30 мкм или при защите поверхности конструкций лакокрасочным покрытием III группы. В твердой среде в дополнение к указанным мерам следует осуществлять одновременно защиту арматуры цинковым покрытием и поверхности конструкции лакокрасочными материалами.

4. ЗАЩИТА ОТ КОРРОЗИИ ПОВЕРХНОСТЕЙ БЕТОННЫХ И ЖЕЛЕЗОБЕТОННЫХ КОНСТРУКЦИЙ (ВТОРИЧНАЯ ЗАЩИТА)

4.1 (2.31). Защита от коррозии поверхностей бетонных и железобетонных конструкций предусматривается со стороны непосредственного воздействия агрессивной среды и осуществляется:

лакокрасочными покрытиями - при действии газообразных и твердых сред (аэрозоли);

лакокрасочными толстослойными (мастичными) покрытиями - при действии жидких сред;

оклеечными покрытиями - при действии жидких сред, в грунтах, в качестве непроницаемого подслоя в облицовочных покрытиях;

облицовочными покрытиями, в том числе из полимербетонов - при действии жидких сред, в грунтах, в качестве защиты от механических повреждений оклеечного покрытия;

пропиткой (уплотняющей) химически стойкими материалами - при действии жидких сред; в грунтах;

гидрофобизацией - при периодическом увлажнении водой или атмосферными осадками, образовании конденсата, в качестве обработки поверхности до нанесения грунтовочного слоя под лакокрасочные покрытия.

Лакокрасочные, оклеечные и облицовочные покрытия в соответствии с их защитными свойствами подразделяются на четыре группы (защитные свойства групп покрытий повышаются от первой к четвертой).

Необходимость защиты поверхностей конструкций, группы принимаемых покрытий и примерная их толщина приведены в табл. 18(13).

Таблица 18(13)

Среда

Степень агрессивного воздействия среды

Группы покрытий (над чертой) и толщина всех элементов покрытия, мм (под чертой)

лакокрасочных

оклеечных

облицовочных

обычных

толстослойных (мастичных)

Газообразная, твердая

Слабоагрессивная

I*; II*

0,1 - 0,15

-

-

-

Среднеагрессивная

III**

0,15 - 0,2

-***

-

-

Сильноагрессивная

IV

0,2 - 0,25

-***

-

-

Жидкая

Слабоагрессивная

-

II

1 - 1,5

-

II

Среднеагрессивная

-

III

1,5 - 2,5

III-IV

III

Сильноагрессивная

-

IV

2,5 - 5

IV

IV

* Покрытия I и II групп следует применять при наличии требований к отделке.

** Покрытия III группы следует применять в среде при наличии газов группы В и при влажном и мокром режиме помещений (или во влажной зоне), а также для защиты внутренней поверхности ограждающих конструкций из легких и ячеистых бетонов.

*** Толстослойные (мастичные) покрытия могут применяться при наличии твердой агрессивной среды в виде сыпучих минеральных солей и агрессивных грунтов выше уровня грунтовых вод.

Не допускается применение в жидких органических средах (масла, нефтепродукты, растворители) лакокрасочных покрытий, рулонных, листовых материалов, а также композиций герметиков на основе битума.

Защиту поверхностей наземных и подземных железобетонных конструкций следует назначать исходя из условия возможности возобновления защитных покрытий. Для подземных конструкций, вскрытие и ремонт которых в процессе эксплуатации практически исключены, необходимо применять материалы, обеспечивающие защиту конструкций на весь период их эксплуатации.

4.2. (2.32). Защита бетонных поверхностей надземных конструкций, эксплуатирующихся в газообразных и твердых агрессивных средах, осуществляется, как правило, лакокрасочными материалами.

Лакокрасочные защитные покрытия, применяемые в строительстве, делятся на два типа: атмосферостойкие (а - стойкие на открытом воздухе, ан - под навесом) а для внутренних работ (п - в помещениях).

К атмосферостойким покрытиям и покрытиям для внутренних работ в зависимости от условий эксплуатации по агрессивности среды, температуре и нагрузке могут предъявляться требования химической стойкости (х - химически стойкие, в - водостойкие, м - маслостойкие, к - кислотостойкие, щ - щелочестойкие, б - бензостойкие, т - термостойкие, тр - трещиностойкие).

Трещиностойкие лакокрасочные покрытия следует предусматривать для конструкций, деформации которых сопровождаются раскрытием трещин в пределах, указанных в табл. 13(9) и 15(11).

К числу химически стойких лакокрасочных материалов относятся эпоксидные, эпоксидно-фенольные, перхлорвиниловые и на сополимерах винилхлорида, хлоркаучуковые, на основе хлорсульфированного полиэтилена, хлорнаиритовые, тиоколовые.

Системы лакокрасочных покрытий включают грунтовочные и покрывные защитные слои. В качестве грунтовок по бетону обычно служат лаковые и эмульсионные составы.

Толщина одного слоя лакокрасочного покрытия зависит от способа его нанесения. Система покрытий в зависимости от числа защитных слоев может иметь различную общую толщину, которая назначается в соответствии с табл. 18(13). Система покрытия при правильно выбранном виде лакокрасочного материала определяет защитные свойства покрытия в данной агрессивной среде.

Требуемую толщину покрытия следует стремиться получать нанесением наименьшего числа слоев, но не менее двух (для обеспечения перекрытия микропор).

Характеристика лакокрасочных материалов по типу пленкообразующего, группы покрытий и некоторые технологические параметры приведены в табл. 19. Более подробные данные по составу лакокрасочных покрытий и технологий их нанесения приведены в соответствующих нормативных документах по защите от коррозии лакокрасочными покрытиями.

4.3. Защита поверхностей подземных конструкций выбирается в зависимости от условий эксплуатации с учетом вида конструкций, их массивности, технологии изготовления и возведения.

А (2.34, 2.35). Наружные боковые поверхности подземных конструкций зданий и сооружений (фундаментов, тоннелей, каналов, коллекторов и т.п.), а также ограждающих конструкций подвальных помещений (стен, полов), подвергающихся воздействию агрессивных грунтовых и производственных вод, защищаются, как правило, мастичными, оклеечными или облицовочными покрытиями (рекомендуемое прил. 5 СНиП 2.03.11-85). Тип покрытия, его группа и рекомендуемые варианты приведены в табл. 20. Выбор типа изоляции приведен в прил. 7. Химическая стойкость изоляционных материалов приведена в прил. 8.


Таблица 19

Характеристика лакокрасочных материалов по типу пленкообразующего

Группа покрытия

№ варианта

Система покрытия

Нормативный документ

Индекс покрытия, характеризующий его стойкость

Состав

Рабочая вязкость по вискозиметру BЗ-4 при 18-23 °С, с, при нанесении способом

Толщина одного слоя, мкм, при нанесении способом

Время высыхания, ч

пневматическим

безвоздушным

ручным (кисть, валик)

пневматическим

безвоздушным

ручным (кисть, валик)

Алкидные

1

1

Эмали ПФ-115 по грунтам: лаки ПФ-170, ПФ-171

ГОСТ 6465-76*

а, ан, п

Суспензия двуокиси титана рутильной формы и других пигментов и наполнителей в пентафталевом лаке с добавкой сиккатива и растворителей (уайт-спирит)

25 - 35

60 - 70

30 - 45

20 - 30

35 - 45

25 - 40

48

ГОСТ 15907-70*

-

-

-

-

-

-

-

-

2

Эмали ПФ-133 по грунтам варианта 1

ГОСТ 926-82

а, ан, п, т

То же

20 - 30

25 - 35

35 - 45

15 - 25

35 - 45

20 - 30

36

3

Эмали ГФ-820 по грунту ГФ-024

МРТУ 6-10-982-75, ТУ 6-10-982-70

а, ан, п, т

Суспензия алюминиевой пудры в глифталевом лаке ГФ-024 (готовится перед употреблением)

18 - 32

25 - 30

20 - 35

15 - 25

15 - 30

15 - 25

72

Масляные

1

1

Краски масляные и алкидные цветные густотертые для внутренних работ:

-

п

Суспензия пигментов и наполнителей, затертых на олифе с добавкой 3-5 % сиккатива или без нее (с различными пленкообразующими)

25 - 35

-

40 - 50

20 - 30

-

20 - 35

24

МА-021

-

-

На натуральной олифе (ГОСТ 7931-76*)

-

-

-

-

-

-

-

МА-025

-

-

На комбинированной олифе, содержащей не более 30 % растворителя

-

-

-

-

-

-

-

по грунту:

 

 

 

 

 

 

 

 

 

 

олифа натуральная оксоль

ГОСТ 190-78*

-

 

 

 

 

 

 

 

 

2

Краски масляные густотертые для наружных работ:

МА-011

МА-015

Грунт по варианту 1 - грунтование разбавленной краской

ГОСТ 8292-85

а, ан, п

То же

25 - 35

-

40 - 50

20 - 30

-

20 - 35

24

Нитроцеллюлозные

1

1

Эмаль НЦ-132К (кистевая)

ГОСТ 6631-74*

п

Суспензия СВП (пигмент развальцованный с нитроцеллюлозой, пластификатором и диспергатором) в растворе коллоксилина и алкидной смолы в смеси органических растворителей с добавлением пластификаторов. Перед употреблением разбавляют: НЦ-132К - растворителем № 649, НЦ-132П - растворителем № 646

-

-

45 - 50

-

-

25 - 40

3

по грунту:

 

 

 

 

 

 

 

 

 

 

лак НЦ-134

ТУ 6-10-1291-77

 

 

 

 

 

 

 

 

 

2

Эмаль НЦ-132П (пульверизационная)

ГОСТ 6631-74*

п

То же

26 - 30

50 - 55

-

30 - 35

15 - 25

-

3

Полимерцементные краски ПВАЦ, СВМЦ, СВЭЦ на основе поливинилацетатной дисперсии

1

1

Дисперсия

ДБ-47/7С или ДБ-40/2С

ГОСТ 18992-80*

а, ан, п

Суспензия цемента, пигментов и наполнителей соответственно в пластифицированной поливинилацетатной дисперсии, дисперсии сополимеров винилацетата с дибутилмалеинатом (С-135) или с этиленом (СВЭД-10 ВМ)

60

-

80

250 - 300

-

350 - 400

1

по грунтам:

 

 

 

 

 

 

 

 

 

 

ГКЖ-10

ТУ 6-02-696-76

-

 

 

 

 

 

 

 

 

ГКЖ-11

ТУ 6-02-696-76

-

 

 

 

 

 

 

 

 

Разбавленная дисперсия по вариантам 1,2,3:

 

 

 

 

 

 

 

 

 

 

Латекс СКС-65ГП

ГОСТ 10564-75*

 

 

 

 

 

 

 

 

 

2

Дисперсия С-135 по грунтам варианта 1

-

а, ан, п

Суспензия цемента, пигментов и наполнителей соответственно в пластифицированной поливинилацетатной дисперсии, дисперсии сополимеров винилацетата с дибутилмалеинатом (С-135) или с этиленом (СВЭД-10 ВМ)

60

-

80

250 - 300

-

350 - 400

1

3

Дисперсия СВЭД-10ВМ по грунтам варианта 1

-

а, ан, п

То же

60

-

80

250 - 300

-

350 - 400

1

Органосиликатные

1

1

ОС-12-03 (б. ОСМ ВН-30) по грунту:

ТУ 84-725-78

aн, п

Суспензия измельченных силикатов и окислов в растворах органических и элементоорганических полимеров. Отверждается тетрабутоксититанатом (ТБТ) или полибутилтитанатом (ПБТ) - 1 % по сухому веществу. Растворитель - толуол

18 - 25

-

30 - 35

25 - 35

-

30 - 35

1

разбавленная краска ОС-12-03

 

Поливинилацетатные водоэмульсионные

1

1

Краски Э-ВА-17 (для наружных работ) по грунтам:

ГОСТ 20833-75*

ан, п

Дисперсия ПВА Д50Н - 44 % (мас.), вода - 18 %, рутил - 18 %, слюда - 15 - 16 %, вспомогательные вещества - 4 - 5 %.

20 - 25

-

40 - 50

10 - 20

-

20 - 30

2

разбавленная краска, латекс СКС-65ГП

ГОСТ 10564-75*

2

Э-ВА-27 (для внутренних работ) по грунтам варианта 1

ГОСТ 19214-80*

п

Дисперсия ПВА пластифицированная - 30 % (мас.), вода - 12 %, литопон - 40 %, вспомогательные вещества - 10 %. Добавки: диспергаторы, загустители, антисептики, пеногасители и др.

20 - 25

-

40 - 50

10 - 20

-

20 - 30

2

Бутадиенстирольные водоэмульсионные

1

1

Э-КЧ-26 по грунтам:

разбавленная краска, латекс СКС-65ГП

ГОСТ 19214-80*

п

Латекс СКС-65ПГ - 39 % (мас.), литопон - 40 %, вода - 12 %, уайт-спирит - 4 %, вспомогательные вещества - 5 %

20-25

-

40-50

10-20

-

20-30

2

Кремнийорганические жидкости (глубинная поверхностная пропитка)

1

1

ГКЖ-10

ТУ 6-02-696-76

а

Водный раствор этилсиликоната натрия

3 - 5 %-ный раствор

-

3 - 5 %-ный раствор

-

-

-

48

2

ГКЖ-11

ТУ 6-02-696-76

а

Водный раствор метилсиликоната натрия

То же

-

То же

-

-

-

48

3

136-41

ГОСТ 10834-76*

а

Полиэтилгидросилоксановая жидкость.

Применяется в виде:

а) водной эмульсии, содержащей в качестве эмульгатора желатин

б) раствора жидкости 136-41 в уайт-спирите или керосине. Все растворы готовятся перед применением

5 - 10 %-ный раствор

-

5 - 10 %-ный раствор

-

-

-

48

Кремний-органические

III

1

Эмаль KO-174 по грунту:

разбавленная краска

ТУ 6-02-576-75

а, ан, п

Суспензия неорганических и органических пигментов в растворе кремнийорганического лака, модифицированного полибутилметакрилатом БМК-5. Разбавляется до рабочей вязкости растворителем Р-5

13 - 18

-

20 - 25

20 - 25

-

25 - 27

2

Эпоксидные

III

1

Эмали ЭП-56 по грунту:

ТУ 6-10-1243-77

б

Раствор эпоксидной смолы Э-41 в органических растворителях с добавлением пигмента и наполнителя. Отвердитель № 1 (3,5 г на 100 г шпаклевочной массы). Растворители: Р-5, № 648

12 - 14

50 - 60

35 - 40

20 - 30

35 - 45

30 - 40

24

лак ЭП-741

ТУ 6-10-682-76

2

эмали ЭП-773 по грунту варианта 1

ТУ 23143-78*

хщ, м, х

Суспензия пигментов и наполнителей в растворе эпоксидной смолы Э-41 в смеси органических растворителей. Отвердитель № 1 (3,5 г на 100 г эмали) или ДЭТА (1,2 г на 100 г эмали). Растворитель № 646

20 - 22

40 - 50

20 - 25

20 - 30

40 - 45

35 - 40

24

III - IV

1

Эмали ЭП-5116 по грунту варианта 1

ТУ 6-10-1369-78

в, х

Суспензия пигментов и наполнителей в композиции с эпоксидной и каменноугольной смолой с добавлением растворителя и отвердителя. Растворители: Р-4, P-40, ксилол. Поставляются в виде двух компонентов: эпоксидного (0,5 мас. ч.) и каменноугольного (1 мас. ч.), смешиваются перед употреблением

20 - 25

40 - 50

35 - 40

40 - 50

40 - 50

35 - 40

48

2

Шпатлевка ЭП-0010 по грунту варианта 1

ГОСТ 10277-76*

x, б, п, м

Смесь пигментов, наполнителей, раствора эпоксидной смолы в органических растворителях с добавлением пластификаторов и отвердителя № 1 (8,5 вес. ч. на 100 в. ч. шпатлевочной массы). Растворители: Р-4, Р-5

20 - 25

30 - 40

35 - 40

20 - 30

80 - 100

30 - 40

24

3

Шпатлевка ЭП-0020

ГОСТ 10277-76*

x, б

То же

17 - 20

30 - 40

35 - 40

20 - 30

80 - 100

30 - 40

24

Перхлорвиниловые и на основе сополимеров винилхлорида

II

1

Эмали ХВ-16 по грунтам:

ТУ 6-10-1301-78

а, ан, п

Суспензия пигментов в растворе перхлорвиниловой смолы с добавлением глифталевой смолы. Растворители: Р-4, Р-5

15 - 20

30 - 40

14 - 16

15 - 25

30 - 35

10 - 20

1

лак ХВ-784

ГОСТ 7313-75*

лак ХС-76

ГОСТ 9355-81*

лак ХС-724

ГОСТ 23494-79*

2

Эмали ХВ-110 по грунтам варианта 1

ГОСТ 18374-79*

a, aн, п

Суспензия пигментов в растворе низковязкой поливинилхлоридной хлорированной смолы в смеси летучих растворителей и алкидно-акриловой смолы (эмаль ХВ-110) или алкидной смолы (эмаль ХВ-113) с добавлением пластификаторов. Перед применением добавляют сиккативы 63 или 64 (ГОСТ 1003-73*) в количестве 0,5 % от массы неразбавленных эмалей

18 - 20

18 - 22

-

15 - 20

20 - 25

-

3

3

Эмали ХВ-113 по грунтам варианта 1

ГОСТ 18374-79*

а, ан, п

То же

18 - 20

18 - 22

-

15 - 20

20 - 25

-

3

4

Эмали ХВ-124 по грунтам варианта 1

ГОСТ 10144-74*

а, ан, п, х

Суспензия пигментов в растворе средневязкой поливинилхлоридной смолы и алкидной смолы в смеси органических растворителей с добавлением пластификаторов

14 - 15

18 - 22

-

15 - 20

20 - 25

-

2

5

Эмаль ХВ-125 по грунтам варианта 1

ГОСТ 10144-74*

a, aн, п, x

То же, перед применением вводится алюминиевая пудра ПАП-2 (8-10 %)

14 - 15

18 - 22

-

18 - 23

20 - 25

-

1

III

1

Эмаль ХВ-1120 по грунтам варианта 1

ТУ 6-10-1277-77

а, ан, п, x

Суспензия пигментов и наполнителей в растворе средневязкой перхлорвиниловой и глифталевой смол с добавлением пластификаторов. Растворитель Р-12

17 - 20

25 - 30

-

20 - 25

15 - 25

-

2

2

Эмаль ХВ-1100 по грунтам варианта 1

ГОСТ 6993-79*

а, ан, п, x

Суспензия пигментов в растворе перхлорвиниловой смолы в смеси летучих органических растворителей с добавлением других смол и пластификаторов. Растворитель Р-4

17 - 20

25 - 30

-

20 - 25

15 - 25

-

2

IV

1

Эмаль ХВ-785 по грунтам варианта 1

ГОСТ 7313-75*

хк, хщ, в

Суспензия перхлорвиниловой смолы в смеси органических растворителей. Растворитель Р-4

17 - 20

20 - 25

20 - 25

18 - 23

15 - 20

15 - 20

1

2

Эмаль ХС-710 по грунтам варианта 1

ГОСТ 9355-81*

хк, хщ, в

Суспензия пигментов в растворе смолы СВХ-40 в смеси органических растворителей. Растворители: № 648, Р-5

14 - 16

30 - 40

35 - 40

20 - 25

15 - 25

30 - 35

2

3

Эмаль ХС-759 по грунтам варианта 1

ГОСТ 23494-79*

хк, хщ, в

Суспензия пигментов в растворе сополимера винилхлорида с винилацетатом в смеси растворителей с добавлением эпоксидной смолы и пластификатора. Растворители: № 648, Р-5

18 - 22

30 - 40

30 - 50

20 - 25

20 - 25

25 - 30

2

Хлоркаучуковые

III

1

Эмаль КЧ-767 по грунту: лак КЧ

ТУ 6-10-821-74

a, aн, п, х

Суспензия пигментов в растворе хлоркаучука и бутилфенолоформальдегидной смолы в смеси органических растворителей

16 - 17

-

40 - 45

20 - 25

-

25 - 40

3

Хлорсульфированный полиэтилен

III-IV

1

Эмали ХП-799 по грунту:

лак ХП-734

ТУ 84-618-80

ТУ 6-02-1152-82

а, ан, x, тр

Суспензия пигментов в лаке ХП-734

50 - 60

160 - 220

180 - 200

15 - 18

30 - 35

30 - 35

2

2

Эмали ХП-5212 по грунту варианта 1

ТУ 84-646-80

а, ан, п, тр

То же

50 - 60

160 - 220

180 - 200

15 - 18

30 - 35

30 - 35

2

3

Лак ХП-734 по грунту варианта 1

ТУ 6-02-1152-82

a, aн, п, x, тр

Раствор хлорсульфированного полиэтилена в ксилоле или толуоле с добавлением стабилизатора

40 - 60

150 - 180

180 - 200

10 - 15

20 - 25

20 - 25

3

Хлорнаиритовые

III

1

Наиритовые красочные составы НТ по грунту:

ТУ 38-10518-77

х, тр, б

Однокомпонентный 50 %-ный раствор на основе наирита НТ в смеси растворителей (аналогично лаку ХН)

300 - 350

100 - 130

300 - 350

45 - 50

25 - 30

45 - 50

3

лак ХН

ТУ 38-10519-77

2

лак ХН по грунту варианта 1

ТУ 38-10519-77

х, тр, б

-

20 - 25

-

20 - 25

10 - 15

-

10 - 15

0,5

Тиоколовые

III

1

Водная дисперсия тиокола Т-50 по грунту: разбавленная дисперсия тиокола Т-50

ТУ 103-114-72

п, х, тр, б

Продукт поликонденсации смеси хлорорганических соединений с полисульфидом. Разводится водой

11 - 13

-

11 - 13

40 - 60

-

40 - 60

5

2

Раствор жидкого тиокола марок I и II по грунту: раствор жидких тиоколов марок I и II

ГОСТ 12812-80*

х, тр, б

Синтетические каучуки полисульфидного типа. Растворитель - Р-4 или смесь ацетона (циклогексанона). Вулканизирующий агент паста № 9 (10 мас. ч.). Ускоритель вулканизации - дифенилгуанидин (ДФГ) - 0,2-0,4 мас. ч.

-

-

35 - 40

-

-

30 - 40

24

3

Раствор герметика:

 

 

Высокопигментированные ламповой сажей или двуокисью титана жидкие тиоколы:

 

 

 

 

 

 

 

У-30М

ГОСТ 13489-79*

х, тр, б

У-30М (без модификации)

-

-

65 - 70

-

-

120 - 130

24

У-30МЭС-5

ТУ 38-105138-80

х, тр, б

У-30МЭС-5

-

-

65 - 70

-

-

120 - 130

24

У-30МЭС-10

по грунту варианта 2

ТУ 105462-72

х, тр б

У-30МЭС-10 (модифицированные эпоксидными смолами).

Перед применением герметики:

1. Разводятся до рабочей вязкости растворителем Р-4

2. Добавляют пасту № 9 для у-30М-5-7 мас. ч., для У-30МЭС-5-7-12 мас. ч., для У-30МЭС-10-8-15 маc. ч.

3. ДФГ: для У-30М-0,1-0,5 мас. ч., для У-30МЭС-5 и У-30МЭС-10-0,3-1,1 мас. ч.

-

-

65 - 70

-

-

120 - 130

24

* Значения индексов: а - покрытия, стойкие на открытом воздухе; ан - то же, под навесом; п - то же, в помещениях; х - химически стойкие; тр - трещиностойкие; т - термостойкие; м - маслостойкие; в - водостойкие; хк - кислотостойкие; хщ - щелочестойкие; б - бензостойкие.

Таблица 20

Покрытия

Группа

№ варианта

Марка материала

ГОСТ

Состав

Технологические показатели

Битумные

II

 

Битумные мастики горячие:

 

 

 

1

2

3

4

5

6

МБК-Г-55

МБК-Г-60

МБК-Г-65

МБК-Г-75

МБК-Г-85

МБК-Г-100

ГОСТ 2889-80

Смесь сплава кровельных битумов БНК-2 и БНК-5 (ГОСТ 9548-74)* с волокнистым или пылевидным наполнителем (асбест 7-го сорта по ГОСТ 12871-83*; тонкомолотые тальк, мел, диатомит, трепел, известняк и другие материалы). Содержание волокнистого наполнителя - 10 - 25 %, пылевидного - 25 - 30 %. Антисептик - кремнефтористый натрий

Готовят в заводских условиях на централизованных установках строительных трестов или непосредственно в варочных котлах, подогреваемых огнем или электричеством, оборудованных перемешивающими устройствами. Перед употреблением мастику разогревают до температуры 150 - 160 °С (при наклейке рубероида и гидроизола), до 130 °С (при наклейке изола). Нанесение механизированное - сжатым воздухом (битумонасосные агрегаты с форсунками)

 

Битумно-резиновые мастики горячие:

 

 

 

7

8

9

10

11

12

13

МБР-Г-55

МБР-Г-60

МБР-Г-65

МБР-Г-70

МБР-Г-75

МБР-Г-85

МБР-Г-100

ТУ 21-27-41-75

Смесь сплава кровельных битумов БНК-2 и БНК-5 с волокнистым наполнителем (асбест 7-го сорта) и резиновой крошкой. Битумное вяжущее - 86 - 76 %, резиновая крошка - 6 - 12 %, волокнистый наполнитель - 8 - 12 %

Технология приготовления и нанесения аналогично нанесению горячих мастик

 

Битумно-резиновые изоляционные мастики:

 

 

 

14

15

16

17

МБР-65

МБР-75

МБР-90

МБР-100

ГОСТ 15836-79

Многокомпонентная однородная масса, состоящая из нефтяного битума (или смеси битумов), наполнителя и пластификатора

Наполнитель - резиновая крошка (5-10 %), пластификатор и антисептик - зеленое масло (5-7 %)

Готовят так же, как и горячую битумную мастику, путем непрерывного перемешивания компонентов при 180-200 °С (в заводских условиях) в течение 1,5-4 ч

 

Мастика изол горячая:

 

 

 

18

19

20

21

МРБ-Г-Г10

МРБ-Г-Г15

холодная:

МРБ-Х-Г10

МРБ-Х-Г15

ТУ 21-27-37-74

Многокомпонентная однородная масса, состоящая из резинобитумного вяжущего (полученного термомеханической обработкой вулканизированной резины или ее регенерата и нефтяного битума), наполнителя, пластификатора и антисептика

Вырабатывается без растворителя - горячая, с растворителем - холодная

Приготовление аналогично приготовлению битумно-резиновой мастики. Горячую мастику перед применением разогревают до 200 °С в специальных котлах в течение 4 ч, непрерывно перемешивая

 

Мастики битумные холодные:

ТУ 21-27-16-68

 

 

22

23

24

25

26

МБС-Х-70

МБС-Х-80

МБС-Х-100

МБК-Х-65

МБК-Х-75

 

Смесь сплава битумов с наполнителями (асботермит - 14 - 30 %, известь - 6 - 30 %) и растворителями (соляровое масло) - 40-10 %

Волокнистый наполнитель 8 - 10 %, пылевидный наполнитель - 12 - 10 %, соляровое масло (керосин) - 20 - 23 %, остальное - битумное вяжущее

Готовятся на механизированных установках. В нагретый до 160 - 170 °С сплав битумов добавляется мелкими порциями смесь сухих наполнителей и растворителей (соляровое масло или керосин) при непрерывном перемешивании. Наносятся установками СО-118, СО-126 через форсунки слоем толщиной 0,5 - 1 мм (общая толщина до 2,5 мм). Предварительно подогревают до 60 - 70 °С

При ручном нанесении пользуются щеткой или гребком

Асфальтовые

III

 

Асфальтовые мастики холодные:

 

 

 

1

асфальтовая ВНИИГ им. Веденеева

-

Паста - 80 %, наполнитель (асбест) - 10, вода - 10

На основе паст (получаемых диспергированием битума или дегтя в воде неорганическими эмульгаторами - известью 1-го сорта, гашеной или негашеной или высокопластичной глиной), наполнителя и воды

2

асфальтовая по способу НИИСП

-

Паста - 50 - 80 %, асбест - 40 - 10, вода - 10

3

асфальтовая

-

Паста - 50 - 70 %, асбест - 17 - 37, вода - 3 - 13

4

Эмульбит с повышенной:

 

 

Нанесение механизированное при помощи сжатого воздуха

адгезией

-

Паста - 50 %, асбест - 5, пылевидный наполнитель - 35, вода - 10

Наносится в два слоя общей толщиной не менее 10 мм. Схватывание - 1 ч, твердение - 5 ч

прочностью

 

Паста - 40 %, асбест - 10, пылевидный наполнитель - 30, вода - 20

 

5

Асфальтовые мастики горячие:

 

 

 

битумный асфальт кислотостойкий

-

Битум нефтяной БН-70/30 - 16 - 18 %, молотый кислотоупорный наполнитель (кварцевая, андезитовая, диабазовая мука, графит, кислотоупорный цемент) - 20 - 29, кварцевый песок - 50 - 55, асбест VI-VII сорта - 5-7. Битум БН 70/30 - 16 - 18, щелочестойкая мука - 20 - 29, молотый щелочестойкий наполнитель (молотый мел, известняк, доломит) - 50 - 55, асбест VI - VII сорта - 5 - 7 %.

Готовятся на заводских установках. Наносятся механизированным способом (асфальтометами) в горячем состоянии при температуре асфальтовой смеси 120 - 150 °С.

6

Битумный асфальт щелочестойкий

-

 

Битумно-латексные

I

1

Битумно-латексная эмульсия анионная

-

Битумная эмульсия - 70 - 85 %, латекс СКС - 30 - 30 % или СКС 65 - 15 %, битум БНД-40/60 или БНД-60/90

Латекс перемешивают с битумной эмульсией катионного типа (эмульгатор - раствор алкилтриметиламмонийхлорида и соляной кислоты в воде или 0,3 - 0,4 %-ный раствор полиэтиленполиамина БП-3 в соляной кислоте 1 % массы битума) непосредственно при нанесении состава. Нанесение механизированное, сжатым воздухом. Водопоглощение - не более 5 %

2

Битумно-латексная эмульсия катионная

-

Битумная эмульсия - 78 %, латекс (в пересчете на сухое вещество) - 22 % или битумная эмульсия - 64 %, латекс (в пересчете на сухое вещество) - 36 %. Применяются латексы СКС-30 или СКС-50ГП, СКС-65, Л-4, Л-7 и др.

Битумная эмульсия, получаемая механическим диспергированием битума в воде в присутствии эмульгатора - асидол-мылонафта с добавкой едкого натра и жидкого стекла, перемешивается с латексом 15-20 мин, до нанесения на защищаемую поверхность. Нанесение механизированное, сжатым воздухом, совместно с коагулятором 5 %-ным раствором хлористого кальция. Водопоглощение не более 5 %

II

1

Битумно-латексная мастика

РСП-239-72

Смесь раствора битума БН-III или БН-IV в толуоле, сольвенте или бензине в соотношении 1:1 (70-80 % веса) со стабилизированным латексом СКС-65ГП (ГОСТ 10564-75)* или СКС-50П (ГОСТ 15080-77)* - 20-30 % вес. Стабилизатор - жидкое стекло или 5 %-ный раствор NaSiF6 в количестве 8-10 % веса латекса

Смешивается в растворомешалках С-756-А и др. в течение 10 - 15 мин. Наносится установкой, состоящей из компрессора, шестеренчатого насоса и специальной форсунки. Толщина одного слоя - 0,7 - 1 мм

Битумно-полимерные

II

1

Битумно-наиритовая мастика

РСН-239-72

Смесь расплава или раствора битума БН-III или БН-IV в толуоле или сольвенте (соотношение 1:1) - 55 - 70 % с раствором каучуковой хлоропреновой смеси - 30 - 46 %

Хлоропреновый каучук (наирит А, Б или их смесь) перетирается на вальцах и смешивается с вулканизирующими и стабилизирующими добавками, затем растворяется в толуоле или сольвенте (соотношение наирита и растворителя 1:3 - 1:5) и смешивается в течение 15 - 20 мин. с расплавом или раствором битума (t = 120 °С). Нанесение аналогично нанесению битумно-латексной мастики. Толщина одного слоя - 0,7 - 1 мм

2

Битумно-полимерные составы на основе хлорсульфированного полиэтилена ХПБМ-2

-

Двухкомпонентный битумный состав, представляющий собой суспензию пигмента в смеси битумного раствора на основе хлорсульфированного полиэтилена ХП-734 (марка Б), в органических растворителях (ксилол, толуол, сольвент). Соотношение ХСПЭ к битуму по сухому веществу 1:2

Готовится перед употреблением путем смешения лака ХII-734 с битумным раствором. Наносится механизированным методом (безвоздушным и пневматическим распылением) и вручную (кистью и валиком) по грунту лак ХII-734. Время практического высыхания - 3 ч. Толщина покрытия - до 0,8 мм. Дополнительный бронирующий слой из песка толщиной 1 - 5 мм с перекрытием дополнительным слоем лака ХII-734. При герметизации стыков и вводов дополнительно армируется тканевыми или сеточными материалами

3

Холодный битумно-этинолевый лак

ТУ МХП 1267-64

Раствор битума IV или V в лаке этиноль (30 %-ном растворе дивинилацетатной смолы в ксилоле) в соотношении 1:10 с добавкой наполнителей и без них. Количество наполнителя - 1 ч на 5 ч битумно-этинолевого лака

Наполнители: диабазовая, андезитовая мука, антофиллитовый или хризотиловый асбесты. Изготовляют на месте потребления путем введения лака этиноль в расплавленный и охлажденный до 70 - 80 °С битум и тщательно перемешивается мешалкой (без наполнителей). Наполнители вводятся в готовый битумно-этинолевый лак. Время практического высыхания лака - 4 ч. Вязкость (по BЗ-4) при 18 - 23 °С - не менее 20 с (при соотношении 1:10) и не менее 40 с (при соотношении 1:5)

Полимерные

III

1

Мастики на основе лака ХП-734:

состав № 1

-

Лак ХП-734 (ТУ 6-02-1152-82) - 100 в.ч., асбест хризотиловый VII сорта марок 300, 370, 450 (ГОСТ 12871-83)* - 20 - 25 в.ч., лак ХП-734 - 100 в.ч.

Составы готовят перед нанесением на двухвалковых мешалках СО-8А или СО-11. Перемешивание - 15 - 20 мин. Наносятся на грунт - лак ХП-734 (толщина слоя грунта 30 - 60 мкм, время сушки до отлипа 15 - 30 мин) в 3 слоя. Толщина 1 слоя - 0,15 - 0,2 мм, время межслойной сушки - 1 - 1,5 ч. Нанесение - вручную (кисть, шпатель); механизированное - специальные пистолеты для нанесения вязких смесей

2

состав № 2

-

Лак ХП-734-100 в.ч., асбест VII сорта - 10 в.ч., тальк технический (ГОСТ 19729-74, ТУ 21-25-201-77) - 20 в.ч.

 

 

Мастики на основе полиизоцианата К:

 

 

 

3

состав № 1

-

Полиизоцианат К (ТУ 6-03-29-2-77) - 100 в.ч., цемент (ГОСТ 10178-85) - 30 в.ч., вода - 10 в.ч.

Составы готовят перед нанесением на мешалках типа СО-8А или СО-11. Перемешивание - 15 - 20 мин. Наносятся на грунт - полиизоцианат, разбавленным толуолом (в соотношении 100:20 в.ч.) в 3 слоя. Толщина слоя грунта 30 - 60 мкм, время сушки до отлипа - 15 - 30 мин. Толщина слоя покрытия - 0,15 - 0,2 мм, время межслойной сушки - 16 - 20 ч. Нанесение - вручную (кисть, шпатель) и механизированное - специальные пистолеты для нанесения вязких смесей

4

состав № 2

-

Полиизоцианат К - 100 в.ч., андезитовая мука (ТУ 6-12-101-81) - 20 в.ч., вода - 10 в.ч.

Исходная вязкость полиизоцианата К-200 с (по BЗ-4 при 20°С). Растворитель - ксилол, толуол

II

1

Полимерцементный состав

РСН 239-72

Шлакопортландцемент марки М 300-20-30 %

Синтетический латекс СКС-65 ГП-32-40 %

Песок мелкозернистый 30 - 32 %

Жидкое натриевое стекло - 0,3 - 0,5 % (g = 1,42)

Кремнефтористый натрий - 0,1 - 0,3 %

Эмульгатор - 0,1 - 0,2 %

Вода - 2,9 - 9,5 %

Синтетический латекс СКС-65 ГП смешивают в стандартных растворомешалках с растворонасосом с жидким стеклом (g = 1,42), эмульгатором, 5 %-ным раствором кремнефтористого натрия. Затем добавляют шлакопортландцемент и песок, перемешивают 5 - 10 мин до получения однородной массы. Жизнеспособность 1 - 4,5 ч. Наносят кистью или пневматическим распылением с помощью специальной форсунки

Безосновные рулонные материалы

III

1

2

Изол И-БД (без полимерных добавок)

И-ПД (с полимерными добавками)

ГОСТ 10296-79

Биостойкий и гидроизоляционный рулонный материал, получаемый из резинобитумного вяжущего, пластификатора, наполнителя, антисептика и полимерных добавок

Выпускается в рулонах длиной не менее 3 м, общей площадью 10 и 15 м2, шириной 500 и 1000 ± 5 мм. Нижняя поверхность полотна изола (внутренняя в рулоне) покрыта слоем минеральной посыпки. Приклеивают битумными, резинобитумными, битумно-полимерными мастиками, нагретыми до температуры 120 - 130 °С

3

Бризол БР-С (средней прочности)

-

Рулонный материал, изготавливаемый методом вальцевания и последующего каландрирования смеси, состоящей из битума, дробленой резины, асбеста и пластификатора

Поставляется рулонами длиной 50 ± 1 м, шириной ±425 + 25 мм с толщиной полотна 1,5 ± 0,2 мм. Температурный интервал применения бризола марки БР-С от 30 до 5 °С, марки Бр-П от 45 до 15 °С. Приклеиваются теми же мастиками, что и изол, разогретыми до температуры 120 - 130 °С.

4

БР-П (повышенной прочности)

 

5

Бутерол

ТУ 38-3-005-82

Рулонный гидроизоляционный материал, изготавливаемый вальцово-каландровым способом из смесей на основе синтетических каучуков, термоэластопласта, пластификатора, вулканизующих агентов и наполнителей

Выпускается в рулонах шириной 650; 750, 950 ± 20 толщиной полотна 1 или 2 ± 0,2 мм. Гидроизоляцию выполняют из 2 и более слоев бутерола толщиной каждый не более 2 мм, наклеивают битумно-полимерной мастикой МБ ПК-75. Перед наклеиванием железобетонную поверхность грунтуют битумно-полимерной эмульсией, или 15 %-ным раствором битума в керосине. Температура мастики в момент нанесения на поверхность - 100 - 140 °С

Рулонные материалы

III

1

Гидроизол ГИ-Г

ГОСТ 7415-86

Беспокровный биостойкий гидроизоляционный рулонный материал, получаемый пропиткой асбестовой бумаги нефтяными битумами БНК-2 (ГОСТ 9548-74)* или БНД-60/90 (ГОСТ 22245-76)*

Выпускается в рулонах с шириной полотна 950 ± 5 мм, толщиной 0,7 ± 0,07 мм, площадью 20 ± 0,4 м. Приклеивается при температуре воздуха до -5 °С

2

Стеклорубероид С-РМ

ГОСТ 15879-70

Рулонный гидроизоляционный материал на стекловолокнистой основе, получаемый двухсторонним нанесением битумного вяжущего на стекловолокнистый холст

Имеет с двух сторон мелкую или пылевидную посыпку (крупность зерен 0,6 мм). Выпускается в рулонах шириной полотна 960 и 1000 ± 20 мм, толщиной 2,5 ± 0,5 мм. Температуроустойчивость не менее 80 °С

3

Гидростеклоизол подкладочный

ТУ 400-1/55-16-77

Состоит из стеклоткани, покрытой с обеих сторон слоем битумного вяжущего (повышенной пластичности)

Выпускается однослойно- и двухслойноармированными в рулонах с шириной полотна 850 - 1000 мм, длиной 10000 ± 250 мм намотанных на бумажную втулку. Температуроустойчивость 60 - 65 °С

Пропиточные материалы

IV

1

Стирольно-инденовая смола

ТУ 14-6-89-73

Получают из кубовых остатков ректификации сырого бензола и смолы пиролиза, а также из полимеров бензольного отделения. Растворитель - ксилол, толуол. Соотношение смолы и растворителя 1:1,5

Пропиточный раствор готовят непосредственно на месте работ путем предварительного растворения раздробленной смолы в емкости с растворителем при механическом перемешивании. Длительность растворения - 24 ч. Условная вязкость по вискозиметру ВУ-2М 36-37С, плотность 0,966 ± 0,001 г/см3. Температурный интервал пропитки 15 - 25 °С. Время пропитки - 8 ч, сушки - 3 сут.

2

Пиропласт

ТУ 6-05-361-276

Продукт термической полимеризации жидкой фракции смолы пиролиза, выкипающей при температуре свыше 180 °С.

Растворитель - ксилол, толуол. Соотношение пиропласта и растворителя 1:1,5

Приготовление пропиточного раствора и технология пропитки аналогичны составам на основе стирольно-инденовой смолы. Длительность растворения - 24 ч. Условная вязкость 35 - 36 с. (ПО ВУ-2М при 20 °С). Плотность - 0,976 ± 0,001 г/см3

3

Полиизоцианат К

ТУ 6-03-29-2-79

Кубовый остаток, получаемый при полном отгоне легколетучих компонентов и при частичном отгоне 44 - дифенилметандиизацианата из полиизоцианата марок А и Б.

Растворитель - ксилол, толуол, соотношение полиизоцианата и растворителя 1:1

Приготовление и технология пропитки аналогичны составам на основе стирольно-инденовой смолы. Длительность растворения - 30 мин. Условная вязкость 28 - 29 с. (по ВУ-2М при 20°C), Плотность - 1,020 ± 0,001 г/см3


При применении рулонной изоляции для защиты боковых поверхностей, последнюю необходимо заводить под подошву фундамента.

При наличии водорастворимых солей свыше 1 % массы грунта для районов со средней месячной температурой самого жаркого месяца свыше 25 °С при средней месячной относительной влажности воздуха менее 40 % необходимо устройство гидроизоляции всех поверхностей фундаментов. Для цокольной части зданий, эксплуатирующихся в указанных условиях, следует принимать бетон марки по водонепроницаемости не менее W6.

Под подошвы бетонных и железобетонных фундаментов следует предусматривать устройство подготовки и изоляции, стойкой к воздействию агрессивной среды. Для защиты подошв фундаментов, расположенных в уровне агрессивных грунтовых вод (с учетом возможности их повышения), необходимо предусматривать:

в кислых слабо- и среднеагрессивных средах - устройство щебеночной подготовки толщиной 100 - 150 мм из плотных изверженных пород с последующей укладкой слоя кислотостойкого асфальта, а в сильноагрессивных кислых средах - дополнительно по кислотостойкому асфальту наклеивать два слоя рулонной изоляции с последующей укладкой слоя кислотостойкого асфальта;

в сульфатных слабо- и среднеагрессивных средах - устройство щебеночной подготовки толщиной 100 - 150 мм с проливкой горячим битумом с последующей подготовкой из бетона или цементно-песчаного раствора или слоя горячей асфальтовой мастики, а для сильноагрессивных сульфатных сред - подготовки из бетона или цементно-песчаного раствора на сульфатостойком портландцементе.

Защиту поверхностей фундаментов, располагаемых в сезонно-оттаивающем слое грунта (в районах вечной мерзлоты), следует осуществлять устройством дренирующей песчаной подсыпки d ~ 60 см от поверхности грунта или устройством теплоизоляционного слоя (например, обшивка пропитанными деревянными щитами или слоем асфальтокерамзитобетона). Такая защита снижает количество циклов замораживания и оттаивания, сдерживает коррозионные процессы в бетоне за счет устранения испаряющих поверхностей. При этом исключается применение традиционной поверхностной защиты конструкций (обмазочной или оклеечной изоляции или пропитки), обусловливающих в указанных условиях накопление влаги в бетоне конструкций.

Б (2.37). Поверхности забивных и погружаемых вибрацией свай должны быть защищены механически прочными покрытиями или пропиткой, сохраняющими защитные свойства в процессе погружения. При этом бетон для свай следует принимать марки по водонепроницаемости не ниже W6.

Бетон свай, предназначенных к эксплуатации в агрессивных сульфатных средах, должен выполняться с применением сульфатостойких или низкоалюминатных цементов.

При защите поверхности свай лакокрасочными (мастичными) покрытиями или пропиткой несущую способность забивных свай следует уточнять путем испытаний.

При пропитке бетонов термопластичными материалами (битум, каменноугольный пек и т.д.) основным условием является обеспечение оптимальной величины условной вязкости пропиточного материала, достигаемой либо нагреванием его выше температуры плавления, либо растворением в органических растворителях.

Пропитка расплавленными битумами, пеком и разогретым до высоких температур (100 °С и выше) петролатумом, мазутом и т.д. требует предварительной сушки изделий.

Для защиты свай и других подземных конструкций в сильноагрессивных средах допускается применение низкотемпературной пропитки (t = 18 - 20 °С) бетонов с равновесной влажностью (Рекомендации по низкотемпературной пропитке железобетонных свай и фундаментов полимерными материалами, М., 1983).

Из-за возможных механических повреждений покрытий при забивке свай минимальная величина сцепления покрытия с бетоном должна быть не менее 0,4 МПа.

Виды и варианты защитных покрытий и пропиток свайных фундаментов приведены в рекомендуемом прил. 5 СНиП 2.03.11-85 и в табл. 20 настоящего Пособия.

Применение битумных покрытий для свай, предназначенных для забивки в песчаные, гравелистые или другие грунты с большим количеством включений гравия и т.п., не рекомендуется.

4.4 (2.35 - 2.36). При наличии в производстве жидких агрессивных сред бетонные и железобетонные фундаменты под металлические колонны и оборудование, а также участки поверхностей других конструкций должны выступать над уровнем пола не менее чем на 300 мм.

В случае невозможности выполнения данного требования должно предусматриваться обетонирование нижних участков колонн на высоту не менее 300 мм выше уровня пола с защитой от попадания агрессивных сред отгибом вверх рулонной изоляции пола на высоту 300 мм.

Изоляция фундаментов и пола должна быть сплошной и единой, а для ее сохранности следует предусматривать устройство температурных компенсаторов или других мероприятий. Для компенсаторов могут быть использованы нержавеющая сталь, полиизобутилен по черной стали и т.п.

Деформационные швы устраиваются, как правило, в местах расположения швов сооружения. Их герметизация осуществляется заполнением эластичными мастиками.

В сухих грунтах, а также в зоне капиллярного поднятия (при неагрессивных грунтовых водах) швы могут герметизироваться битумом с волокнистым наполнителем (асбестом) или мастикой битуминоль.

При слабой степени агрессивности среды деформационный шов может быть выполнен с применением в качестве компенсатора оцинкованной стали, при средней и сильной - нержавеющей стали или полиизобутилена.

При систематическом попадании на фундаменты жидкостей средней и сильной степени агрессивного воздействия необходимо предусматривать устройство поддонов под оборудованием и трубопроводами.

Участки поверхностей конструкций, где невозможно технологическими мероприятиями избежать облива или обрызга агрессивными жидкостями, должны иметь местную дополнительную защиту оклеечными, облицовочными или другими покрытиями.

Трубопроводы подземных коммуникаций, транспортирующие агрессивные по отношению к бетону или железобетону жидкости, должны быть расположены в каналах или тоннелях и быть доступны для систематического осмотра.

Сточные лотки, приямки, коллекторы, транспортирующие агрессивные жидкости, должны быть удалены от фундаментов зданий, колонн, стен, фундаментов под оборудование не менее чем на 1 м.

В случае если температура технологических жидкостей внутри труб выше 60 °С, состав мастик для заливки швов назначается с соответствующей термостойкостью.

4.5 (2.38). Для конструкций, в которых устройство защиты поверхности затруднено (буронабивные сваи, конструкции, возводимые методом «стена в грунте», и т.п.), необходимо применять первичную защиту с использованием специальных видов цементов, заполнителей, подбором составов бетона, введением добавок, повышающих стойкость бетона, и т.п.

4.6 (2.39). В деформационных швах ограждающих конструкций должны быть предусмотрены компенсаторы из оцинкованной, нержавеющей или гуммированной стали, полиизобутилена или других материалов и установка их на химически стойкой мастике с плотным закреплением. Конструкция деформационного шва должна исключать возможность проникания через него агрессивной среды. Герметизация стыков и швов ограждающих конструкций должна быть предусмотрена путем заполнения зазоров герметиками.

4.7 (2.40 - 2.46). Защиту от коррозии поверхностей необетонируемых стальных закладных деталей и соединительных элементов сборных железобетонных конструкций в зависимости от их назначения и условий эксплуатации следует производить лакокрасочными, металлическими (цинковыми или алюминиевыми) или комбинированными покрытиями (лакокрасочными по металлизационному слою), по табл. 21. Возможно также применение термодиффузионных цинковых покрытий в соответствии с прил. 14 к СНиП 2.03.11-85.

Таблица 21

Степень агрессивного воздействия газообразной среды

Влажностный режим помещения по СНиП II-3-79**

Защитные покрытия

лакокрасочные

металлические (цинковые и алюминиевые)

комбинированные (лакокрасочные по металлизационному слою)

Неагрессивная

Сухой

+

 

 

Нормальный

+

 

 

Слабоагрессивная

Сухой

+

 

 

Нормальный

+

 

 

Влажный или мокрый

 

+

 

Среднеагрессивная

Сухой

 

+

 

Нормальный

 

 

+

Влажный или мокрый

 

 

+

Сильноагрессивная

Сухой

 

 

+

Нормальный

 

 

+

Влажный или мокрый