|
ÃÎÑÒ Ð 50779.10-2000 (ÈÑÎ 3534.1-93) ÃÎÑÓÄÀÐÑÒÂÅÍÍÛÉ ÑÒÀÍÄÀÐÒ ÐÎÑÑÈÉÑÊÎÉ ÔÅÄÅÐÀÖÈÈ Ñòàòèñòè÷åñêèå ìåòîäû ÂÅÐÎßÒÍÎÑÒÜ È ÎÑÍÎÂÛ ÑÒÀÒÈÑÒÈÊÈ Òåðìèíû è îïðåäåëåíèÿ ÃÎÑÑÒÀÍÄÀÐÒ ÐÎÑÑÈÈ Ìîñêâà ÏÐÅÄÈÑËÎÂÈÅ 1. ÐÀÇÐÀÁÎÒÀÍ È ÂÍÅÑÅÍ Òåõíè÷åñêèì êîìèòåòîì ïî
ñòàíäàðòèçàöèè ÒÊ 125 «Ñòàòèñòè÷åñêèå ìåòîäû â óïðàâëåíèè êà÷åñòâîì ïðîäóêöèè», Àêöèîíåðíûì îáùåñòâîì «Íàó÷íî-èññëåäîâàòåëüñêèé
öåíòð êîíòðîëÿ è äèàãíîñòèêè òåõíè÷åñêèõ ñèñòåì» (ÀÎ «ÍÈÖ ÊÄ»). 2. ÏÐÈÍßÒ È ÂÂÅÄÅÍ Â
ÄÅÉÑÒÂÈÅ Ïîñòàíîâëåíèåì Ãîññòàíäàðòà Ðîññèè îò 29 äåêàáðÿ 2000 ã. ¹ 429-ñò. 3. Ðàçäåëû íàñòîÿùåãî
ñòàíäàðòà, çà èñêëþ÷åíèåì ðàçäåëîâ 1a, 1b è ïðèëîæåíèÿ À, ïðåäñòàâëÿþò
ñîáîé àóòåíòè÷íûé òåêñò ìåæäóíàðîäíîãî ñòàíäàðòà ÈÑÎ 3534.1-93 «Ñòàòèñòèêà.
Ñëîâàðü è óñëîâíûå îáîçíà÷åíèÿ. ×àñòü 1. Âåðîÿòíîñòü è îñíîâíûå ñòàòèñòè÷åñêèå
òåðìèíû». 4. ÂÂÅÄÅÍ ÂÏÅÐÂÛÅ. ÑÎÄÅÐÆÀÍÈÅ ÂÂÅÄÅÍÈÅ Óñòàíîâëåííûå â ñòàíäàðòå òåðìèíû ðàñïîëîæåíû â
ñèñòåìàòèçèðîâàííîì ïîðÿäêå è îòðàæàþò ñèñòåìó ïîíÿòèé â îáëàñòè òåîðèè
âåðîÿòíîñòåé è ìàòåìàòè÷åñêîé ñòàòèñòèêè. Äëÿ êàæäîãî ïîíÿòèÿ óñòàíîâëåí îäèí
ñòàíäàðòèçîâàííûé òåðìèí. Íåäîïóñòèìûå ê ïðèìåíåíèþ òåðìèíû-ñèíîíèìû
ïðèâåäåíû â êðóãëûõ ñêîáêàõ ïîñëå ñòàíäàðòèçîâàííîãî òåðìèíà è îáîçíà÷åíû
ïîìåòîé «Íäï.». Òåðìèíû-ñèíîíèìû áåç ïîìåòû «Íäï.» ïðèâåäåíû â
êà÷åñòâå ñïðàâî÷íûõ äàííûõ è íå ÿâëÿþòñÿ ñòàíäàðòèçîâàííûìè. Çàêëþ÷åííàÿ â êðóãëûå ñêîáêè ÷àñòü òåðìèíà ìîæåò
áûòü îïóùåíà ïðè èñïîëüçîâàíèè òåðìèíà â äîêóìåíòàõ ïî ñòàíäàðòèçàöèè. Íàëè÷èå êâàäðàòíûõ ñêîáîê â òåðìèíîëîãè÷åñêîé
ñòàòüå îçíà÷àåò, ÷òî â íåå âêëþ÷åíû äâà òåðìèíà, èìåþùèõ îáùèå òåðìèíîýëåìåíòû.  àëôàâèòíûõ óêàçàòåëÿõ äàííûå òåðìèíû ïðèâåäåíû
îòäåëüíî ñ óêàçàíèåì íîìåðà ñòàòüè. Ïðèâåäåííûå îïðåäåëåíèÿ ìîæíî ïðè íåîáõîäèìîñòè
èçìåíèòü, ââîäÿ â íèõ ïðîèçâîäíûå ïðèçíàêè, ðàñêðûâàÿ çíà÷åíèÿ èñïîëüçóåìûõ â
íèõ òåðìèíîâ, óêàçûâàÿ îáúåêòû, âõîäÿùèå â îáúåì îïðåäåëÿåìîãî ïîíÿòèÿ.
Èçìåíåíèÿ íå äîëæíû íàðóøàòü îáúåì è ñîäåðæàíèå ïîíÿòèé, îïðåäåëåííûõ â äàííîì
ñòàíäàðòå. Ñòàíäàðòèçîâàííûå òåðìèíû íàáðàíû ïîëóæèðíûì
øðèôòîì, èõ êðàòêèå ôîðìû, ïðåäñòàâëåííûå àááðåâèàòóðîé, - ñâåòëûì, à ñèíîíèìû
- êóðñèâîì.  ñòàíäàðòå ïðèâåäåíû èíîÿçû÷íûå ýêâèâàëåíòû
ñòàíäàðòèçîâàííûõ òåðìèíîâ íà àíãëèéñêîì (en) è ôðàíöóçñêîì (fr) ÿçûêàõ. Â íàñòîÿùåì ñòàíäàðòå
ìíîãèå òåðìèíû îïðåäåëåíû îäíîâðåìåííî â ðàçäåëå 1 è â ðàçäåëå 2 â çàâèñèìîñòè îò òîãî,
èìåþò ëè îíè ïðèìåíåíèå: - òåîðåòè÷åñêîå - â âåðîÿòíîñòíîì ñìûñëå; - ïðàêòè÷åñêîå - â ñòàòèñòè÷åñêîì ñìûñëå. Òåðìèíû, îïðåäåëåííûå â ðàçäåëå 1, ñôîðìóëèðîâàíû íà
ÿçûêå ñâîéñòâ ãåíåðàëüíûõ ñîâîêóïíîñòåé. Â ðàçäåëå 2 îïðåäåëåíèÿ îòíåñåíû ê
ìíîæåñòâó íàáëþäåíèé. Ìíîãèå èç íèõ îñíîâàíû íà âûáîðî÷íûõ íàáëþäåíèÿõ èç
íåêîòîðîé ñîâîêóïíîñòè. Äëÿ òîãî ÷òîáû ðàçëè÷àòü ïàðàìåòðû ãåíåðàëüíîé
ñîâîêóïíîñòè è ðåçóëüòàòû âû÷èñëåíèé îöåíîê ïàðàìåòðîâ ïî âûáîðî÷íûì äàííûì, ê
îïðåäåëåíèÿì ðÿäà òåðìèíîâ èç ðàçäåëà 2 äîáàâëåíî ñëîâî «âûáîðî÷íûé» èëè
«ýìïèðè÷åñêèé». ÃÎÑÓÄÀÐÑÒÂÅÍÍÛÉ ÑÒÀÍÄÀÐÒ ÐÎÑÑÈÉÑÊÎÉ ÔÅÄÅÐÀÖÈÈ Ñòàòèñòè÷åñêèå ìåòîäû ÂÅÐÎßÒÍÎÑÒÜ È ÎÑÍÎÂÛ ÑÒÀÒÈÑÒÈÊÈ Òåðìèíû è îïðåäåëåíèÿ Statistical
methods. Probability and general statistical terms. Äàòà ââåäåíèÿ 2001-07-01 1a. Îáëàñòü ïðèìåíåíèÿÍàñòîÿùèé ñòàíäàðò óñòàíàâëèâàåò òåðìèíû è
îïðåäåëåíèÿ ïîíÿòèé â îáëàñòè òåîðèè âåðîÿòíîñòåé è ìàòåìàòè÷åñêîé ñòàòèñòèêè. Òåðìèíû, óñòàíîâëåííûå íàñòîÿùèì ñòàíäàðòîì,
îáÿçàòåëüíû äëÿ ïðèìåíåíèÿ âî âñåõ âèäàõ äîêóìåíòàöèè è ëèòåðàòóðû ïî
ñòàòèñòè÷åñêèì ìåòîäàì, âõîäÿùèõ â ñôåðó ðàáîò ïî ñòàíäàðòèçàöèè è (èëè)
èñïîëüçóþùèõ ðåçóëüòàòû ýòèõ ðàáîò. 1b. Íîðìàòèâíûå ññûëêè íàñòîÿùåì ñòàíäàðòå èñïîëüçîâàíû ññûëêè íà
ñëåäóþùèå ñòàíäàðòû: ÃÎÑÒ Ð 50779,11-2000 (ÈÑÎ 3534.2-93)
Ñòàòèñòè÷åñêèå ìåòîäû. Ñòàòèñòè÷åñêîå óïðàâëåíèå êà÷åñòâîì. Òåðìèíû è
îïðåäåëåíèÿ. ÈÑÎ 31.0-921) Âåëè÷èíû è åäèíèöû
èçìåðåíèÿ. ×àñòü 0. Îáùèå ïðèíöèïû. ÈÑÎ 31.1-921) Âåëè÷èíû è åäèíèöû
èçìåðåíèÿ. ×àñòü 1. Ïðîñòðàíñòâî è âðåìÿ. ÈÑÎ 31.2-921) Âåëè÷èíû è åäèíèöû
èçìåðåíèÿ. ×àñòü 2. Ïåðèîäè÷åñêèå ÿâëåíèÿ. ÈÑÎ 31.3-921) Âåëè÷èíû è åäèíèöû
èçìåðåíèÿ. ×àñòü 3. Ìåõàíèêà. ÈÑÎ 31.4-921) Âåëè÷èíû è åäèíèöû
èçìåðåíèÿ. ×àñòü 4. Òåðìîîáðàáîòêà. ÈÑÎ 31.5-921) Âåëè÷èíû è åäèíèöû
èçìåðåíèÿ. ×àñòü 5. Ýëåêòðè÷åñòâî è ìàãíèòíîå èçëó÷åíèå. ÈÑÎ 31.6-921) Âåëè÷èíû è åäèíèöû
èçìåðåíèÿ. ×àñòü 6. Ñâåòîâîå è ýëåêòðîìàãíèòíîå èçëó÷åíèå. ÈÑÎ 31.7-921) Âåëè÷èíû è åäèíèöû
èçìåðåíèÿ. ×àñòü 7. Àêóñòèêà. ÈÑÎ 31.8-921) Âåëè÷èíû è åäèíèöû
èçìåðåíèÿ. ×àñòü 8. Ôèçè÷åñêàÿ õèìèÿ è ìîëåêóëÿðíàÿ ôèçèêà. ÈÑÎ 31.9-921) Âåëè÷èíû è åäèíèöû
èçìåðåíèÿ. ×àñòü 9. Àòîìíàÿ è ÿäåðíàÿ ôèçèêà. ÈÑÎ 31.10-921) Âåëè÷èíû è åäèíèöû
èçìåðåíèÿ. ×àñòü 10. ßäåðíûå ðåàêöèè è èîíîâîå èçëó÷åíèå. ÈÑÎ 31.11-921) Âåëè÷èíû è åäèíèöû
èçìåðåíèÿ. ×àñòü 11. Ìàòåìàòè÷åñêèå çíàêè è ñèìâîëû, èñïîëüçóåìûå â ôèçè÷åñêèõ
íàóêàõ. ÈÑÎ 31.12-921) Âåëè÷èíû è åäèíèöû
èçìåðåíèÿ. ×àñòü 12. ×èñëî õàðàêòåðèñòèê. ÈÑÎ 31.13-921) Âåëè÷èíû è åäèíèöû
èçìåðåíèÿ. ×àñòü 13. Ôèçèêà òâåðäîãî òåëà. ÈÑÎ 3534.3-851) Ñòàòèñòèêà. Ñëîâàðü è
óñëîâíûå îáîçíà÷åíèÿ. ×àñòü 3. Ïëàíèðîâàíèå ýêñïåðèìåíòîâ. ÈÑÎ 5725.1-911) Òî÷íîñòü ìåòîäîâ è
ðåçóëüòàòîâ èçìåðåíèé. ×àñòü 1. Îáùèå ïðèíöèïû è îïðåäåëåíèÿ 1)
Îðèãèíàëû ìåæäóíàðîäíûõ ñòàíäàðòîâ ÈÑÎ - âî ÂÍÈÈÊÈ Ãîññòàíäàðòà Ðîññèè. 1. ÒÅÐÌÈÍÛ, ÈÑÏÎËÜÇÓÅÌÛÅ Â ÒÅÎÐÈÈ ÂÅÐÎßÒÍÎÑÒÅÉ
ÀËÔÀÂÈÒÍÛÉ ÓÊÀÇÀÒÅËÜ ÒÅÐÌÈÍΠÍÀ ÐÓÑÑÊÎÌ ßÇÛÊÅc2-êðèòåðèé 2.86 F-êðèòåðèé 2.88 F-ðàñïðåäåëåíèå 1.41 t-êðèòåðèé 2.87 t-ðàñïðåäåëåíèå 1.40 áåòà-ðàñïðåäåëåíèå 1.45 âåëè÷èíà (èçìåðèìàÿ) 3.1 âåëè÷èíà èçìåðÿåìàÿ 3.5 âåëè÷èíà ñòàíäàðòèçîâàííàÿ ñëó÷àéíàÿ 1.25 âåëè÷èíà ñëó÷àéíàÿ 1.2 âåëè÷èíà öåíòðèðîâàííàÿ ñëó÷àéíàÿ 1.21 âåëè÷èíà ôèçè÷åñêàÿ 3.1 âåðîÿòíîñòü 1.1 âåðîÿòíîñòü äîâåðèòåëüíàÿ 2.59 âåðîÿòíîñòü îøèáêè âòîðîãî ðîäà 2.78 âåðîÿòíîñòü îøèáêè ïåðâîãî ðîäà 2.76 âîñïðîèçâîäèìîñòü (ðåçóëüòàòîâ ïðîâåðêè) 3.20 âûáîðêà 4.2 âûáîðêà áåç âîçâðàùåíèÿ 4.7 âûáîðêà (ïðîáà) âòîðè÷íàÿ 4.22 âûáîðêà äóáëèðóþùàÿ 4.12 âûáîðêà êîíå÷íàÿ 4.23 âûáîðêà îáúåäèíåííàÿ 4.28 âûáîðêà ïåðâè÷íàÿ 4.21 âûáîðêà ðàññëîåííàÿ 4.14 âûáîðêà ïðîñòàÿ ñëó÷àéíàÿ 4.9 âûáîðêà ñ âîçâðàùåíèåì 4.6 âûáîðêà ñëó÷àéíàÿ 4.8 âûáðîñû 2.64 ãàììà-ðàñïðåäåëåíèå 1.44 ãèïîòåçà íóëåâàÿ è ãèïîòåçà àëüòåðíàòèâíàÿ 2.66 ãèïîòåçà ïðîñòàÿ 2.67 ãèïîòåçà ñëîæíàÿ 2.68 ãèñòîãðàììà 2.17 ãðàíèöà äîâåðèòåëüíàÿ 2.60 ãðàíèöû êëàññà 2.8 ãðàíèöû òîëåðàíòíûå 2.62 äåëåíèå ïðîáû 4.11 äèàãðàììà ðàçáðîñà 2.21 äèàãðàììà ðàññåÿíèÿ 2.21 äèàãðàììà ñòîëáèêîâàÿ 2.18 äèñïåðñèÿ âûáîðî÷íàÿ 2.33 äèñïåðñèÿ (ñëó÷àéíîé âåëè÷èíû) 1.22 äîëÿ âûáîðî÷íàÿ 4.24 åäèíèöà 2.1 åäèíèöà âûáîðî÷íàÿ 4.1 çíà÷åíèå (âåëè÷èíû) èñòèííîå 3.2 çíà÷åíèå (âåëè÷èíû) äåéñòâèòåëüíîå 3.3 çíà÷åíèå êðèòè÷åñêîå 2.72 çíà÷åíèå íîðìàëüíîå ïðèíÿòîå 3.4 çíà÷åíèå îöåíêè 2.51 èíòåðâàë äâóñòîðîííèé äîâåðèòåëüíûé 2.57 èíòåðâàë êëàññà 2.10 èíòåðâàë îäíîñòîðîííèé äîâåðèòåëüíûé 2.58 èíòåðâàë òîëåðàíòíûé 2.61 êâàíòèëü (ñëó÷àéíîé âåëè÷èíû) 1.14 êâàðòèëü 1.16 êëàññ 2.7 êîâàðèàöèÿ 1.32 êîâàðèàöèÿ âûáîðî÷íàÿ 2.40 êîððåëÿöèÿ 1.13 êîýôôèöèåíò âàðèàöèè âûáîðî÷íûé 2.35 êîýôôèöèåíò âàðèàöèè (ñëó÷àéíîé âåëè÷èíû) 1.24 êîýôôèöèåíò êîððåëÿöèè 1.33 êîýôôèöèåíò êîððåëÿöèè âûáîðî÷íûé 2.41 êîýôôèöèåíò ðåãðåññèè âûáîðî÷íûé 2.44 êðèâàÿ ìîùíîñòè (êðèòåðèÿ) 2.81 êðèâàÿ îïåðàòèâíîé õàðàêòåðèñòèêè 2.83 êðèâàÿ ÎÕ 2.83 êðèâàÿ ðåãðåññèè (Y ïî X) 1.34 êðèâàÿ ðåãðåññèè (Y ïî Õ äëÿ âûáîðêè) 2.42 êðèòåðèé äâóñòîðîííèé 2.74 êðèòåðèé îäíîñòîðîííèé 2.73 êðèòåðèé ñâîáîäíûé îò ðàñïðåäåëåíèÿ 2.69 êðèòåðèé ñîãëàñèÿ ðàñïðåäåëåíèÿ 2.63 êðèòåðèé ñòàòèñòè÷åñêèé 2.65 êðèòåðèé Ñòüþäåíòà 2.87 êðèòåðèé Ôèøåðà 2.88 ìåäèàíà 1.15 ìåäèàíà âûáîðî÷íàÿ 2.28 ìîäà 1.17 ìîìåíò êîððåëÿöèîííûé 1.32 ìîìåíò ïîðÿäêîâ q è s îòíîñèòåëüíî
òî÷êè (à, b) ñîâìåñòíûé 1.30 ìîìåíò ïîðÿäêîâ q è s ñîâìåñòíûé öåíòðàëüíûé 1.31 ìîìåíò ïîðÿäêîâ q è s ñîâìåñòíûé
öåíòðàëüíûé âûáîðî÷íûé 2.39 ìîìåíò ïîðÿäêà q îòíîñèòåëüíî a 1.27 ìîìåíò ïîðÿäêà q îòíîñèòåëüíî íà÷àëà
îòñ÷åòà 1.26 ìîìåíò ïîðÿäêà q îòíîñèòåëüíî íà÷àëà
îòñ÷åòà âûáîðî÷íûé 2.36 ìîìåíò ïîðÿäêà q öåíòðàëüíûé 1.28 ìîìåíò ïîðÿäêà q öåíòðàëüíûé âûáîðî÷íûé 2.37 ìîìåíò ïîðÿäêîâ q è s îòíîñèòåëüíî
íà÷àëà îòñ÷åòà ñîâìåñòíûé 1.29 ìîìåíò ïîðÿäêîâ q è s îòíîñèòåëüíî
íà÷àëà îòñ÷åòà ñîâìåñòíûé âûáîðî÷íûé 2.38 ìîìåíò ïîðÿäêîâ q è s ñîâìåñòíûé
öåíòðàëüíûé 1.31 ìîìåíò ïîðÿäêîâ q è s ñîâìåñòíûé öåíòðàëüíûé
âûáîðî÷íûé 2.39 ìîùíîñòü êðèòåðèÿ 2.79 íåçàâèñèìîñòü (ñëó÷àéíûõ âåëè÷èí) 1.11 íåîïðåäåëåííîñòü (ðåçóëüòàòà ïðîâåðêè) 3.25 îáëàñòü êðèòè÷åñêàÿ 2.71 îáðàçåö (äëÿ èñïûòàíèé) 4.26 îáúåêò 2.1 îáúåì âûáîðêè 4.3 îæèäàíèå (ñëó÷àéíîé âåëè÷èíû) ìàòåìàòè÷åñêîå 1.18 îæèäàíèå ìàðãèíàëüíîå ìàòåìàòè÷åñêîå 1.19 îæèäàíèå óñëîâíîå ìàòåìàòè÷åñêîå 1.20 îòáîð âûáîðêè 4.4 îòáîð ïðîá 4.27 îòáîð êëàñòåðíûé 4.18 îòáîð ìåòîäîì ãðóïïèðîâêè 4.18 îòáîð ìíîãîñòàäèéíûé 4.19 îòáîð êëàñòåðíûé ìíîãîñòàäèéíûé 4.20 îòáîð ïåðèîäè÷åñêèé ñèñòåìàòè÷åñêèé 4.16 îòáîð ñèñòåìàòè÷åñêèé 4.15 îòêëîíåíèå (ñëó÷àéíîé âåëè÷èíû) ñòàíäàðòíîå 1.23 îòêëîíåíèå âîñïðîèçâîäèìîñòè ñòàíäàðòíîå 3.22 îòêëîíåíèå ïîâòîðÿåìîñòè ñòàíäàðòíîå 3.17 îòêëîíåíèå (âûáîðêè) ñðåäíåå 2.32 îòêëîíåíèå ñòàíäàðòíîå âûáîðî÷íîå 2.34 îòêëîíåíèå ñòàíäàðòíîå îòíîñèòåëüíîå 2.35 îöåíèâàíèå (ïàðàìåòðà) 2.49 îöåíêà 2.50 îöåíêà íåñìåùåííàÿ 2.55 îøèáêà âòîðîãî ðîäà 2.77 îøèáêà ïåðâîãî ðîäà 2.75 îøèáêà ðåçóëüòàòà (ïðîâåðêè) 3.8 îøèáêà ðåçóëüòàòà (ïðîâåðêè) ñèñòåìàòè÷åñêàÿ 3.10 îøèáêà ðåçóëüòàòà (ïðîâåðêè) ñëó÷àéíàÿ 3.9 îøèáêà ñðåäíåêâàäðàòè÷íàÿ 2.56 îøèáêà ñòàíäàðòíàÿ 2.56 ïàðàìåòð 1.12 ïåðèîä îòáîðà (âûáîðêè) 4.17 ïëîòíîñòü ðàñïðåäåëåíèÿ (âåðîÿòíîñòåé) 1.5 ïîâåðõíîñòü ðåãðåññèè (Z ïî Õ è Y) 1.35 ïîâåðõíîñòü ðåãðåññèè (Z ïî X è Y äëÿ âûáîðêè) 2.43 ïîâòîðåíèå 2.89 ïîâòîðÿåìîñòü (ðåçóëüòàòà ïðîâåðêè) 3.15 ïîãðåøíîñòü âûáîðî÷íîãî ìåòîäà 2.53 ïîãðåøíîñòü îöåíêè 2.52 ïîäâûáîðêà 4.10 ïîäãîòîâêà ïðîáû 4.30 ïîäñîâîêóïíîñòü 2.5 ïîëèãîí êóìóëÿòèâíûõ ÷àñòîò 2.19 ïðàâèëüíîñòü (ðåçóëüòàòà ïðîâåðêè) 3.12 ïðåäåë âîñïðîèçâîäèìîñòè 3.23 ïðåäåë ïîâòîðÿåìîñòè 3.18 ïðåäåëû êëàññà 2.8 ïðåöèçèîííîñòü (ðåçóëüòàòà ïðîâåðêè) 3.14 ïðèçíàê 2.2 ïðè÷èíû ñëó÷àéíûå 2.92 ïðîáà 4.2 ïðîáà âòîðè÷íàÿ 4.22 ïðîáà äëÿ àíàëèçà 4.32 ïðîáà äóáëèðóþùàÿ 4.12 ïðîáà ëàáîðàòîðíàÿ 4.31 ïðîáà ìãíîâåííàÿ 4 25 ïðîáà ïåðâè÷íàÿ 4.21 ïðîáà îáúåäèíåííàÿ 4.29 ïðîáà ñóììàðíàÿ 4.28 ïðîáà ðàññëîåííàÿ 4.14 ïðîâåäåíèå ýêñïåðèìåíòà ïîâòîðíîå 2.90 ïðîöåäóðà âûáîðî÷íîãî êîíòðîëÿ 4.5 ðàçìàõ (âûáîðêè) 2.30 ðàçìàõ (âûáîðîê) ñðåäíèé 2.31 ðàçíîñòü âîñïðîèçâîäèìîñòè êðèòè÷åñêàÿ 3.24 ðàçíîñòü ïîâòîðÿåìîñòè êðèòè÷åñêàÿ 3.19 ðàìêè îòáîðà 2.4 ðàíäîìèçàöèÿ 2.91 ðàñïðåäåëåíèå c2 1.39 ðàñïðåäåëåíèå áèíîìèàëüíîå 1.49 ðàñïðåäåëåíèå Âåéáóëëà 1.48 ðàñïðåäåëåíèå (âåðîÿòíîñòåé) ìàðãèíàëüíîå 1.9 ðàñïðåäåëåíèå (âåðîÿòíîñòåé) 1.3 ðàñïðåäåëåíèå (âåðîÿòíîñòåé) óñëîâíîå 1.10 ðàñïðåäåëåíèå ãèïåðãåîìåòðè÷åñêîå 1.52 ðàñïðåäåëåíèå Ãóìáåëÿ 1.46 ðàñïðåäåëåíèå äâóìåðíîå íîðìàëüíîå 1.53 ðàñïðåäåëåíèå äâóìåðíîå Ëàïëàñà- Ãàóññà 1.53 ðàñïðåäåëåíèå äâóìåðíîå Ëàïëàñà- Ãàóññà
íîðìèðîâàííîå 1.54 ðàñïðåäåëåíèå Ëàïëàñà-Ãàóññà 1.37 ðàñïðåäåëåíèå Ëàïëàñà- Ãàóññà ñòàíäàðòíîå 1.38 ðàñïðåäåëåíèå ëîãàðèôìè÷åñêè íîðìàëüíîå 1.42 ðàñïðåäåëåíèå ìíîãîìåðíîé ñëó÷àéíîé âåëè÷èíû 1.55 ðàñïðåäåëåíèå ìóëüòèíîìèàëüíîå 1.55 ðàñïðåäåëåíèå íîðìàëüíîå 1.37 ðàñïðåäåëåíèå ñòàíäàðòèçîâàííîå äâóìåðíîå
íîðìàëüíîå 1.54 ðàñïðåäåëåíèå ñòàíäàðòíîå íîðìàëüíîå 1.38 ðàñïðåäåëåíèå Ñòüþäåíòà 1.40 ðàñïðåäåëåíèå îòðèöàòåëüíîå áèíîìèàëüíîå 1.50 ðàñïðåäåëåíèå ïðÿìîóãîëüíîå 1.36 ðàñïðåäåëåíèå Ïóàññîíà 1.51 ðàñïðåäåëåíèå ðàâíîìåðíîå 1.36 ðàñïðåäåëåíèå Ôðåøý 1.47 ðàñïðåäåëåíèå ÷àñòîò 2.15 ðàñïðåäåëåíèå ÷àñòîò äâóìåðíîå 2.20 ðàñïðåäåëåíèå ÷àñòîò ìàðãèíàëüíîå 2.24 ðàñïðåäåëåíèå ÷àñòîò ìíîãîìåðíîå 2.23 ðàñïðåäåëåíèå ÷àñòîò îäíîìåðíîå 2.16 ðàñïðåäåëåíèå ÷àñòîò óñëîâíîå 2.25 ðàñïðåäåëåíèå ýêñïîíåíöèàëüíîå 1.43 ðàñïðåäåëåíèå ýêñòðåìàëüíûõ çíà÷åíèé òèïà I 1.46 ðàñïðåäåëåíèå ýêñòðåìàëüíûõ çíà÷åíèé òèïà II 1.47 ðàñïðåäåëåíèå ýêñòðåìàëüíûõ çíà÷åíèé òèïà III 1.48 ðàññëîåíèå 4.13 ðåçóëüòàò (íà âûáðàííîì óðîâíå çíà÷èìîñòè a) çíà÷èìûé 2.84 ðåçóëüòàò ïðîâåðêè 3.7 ðåïëèêà 2.90 ñåðåäèíà êëàññà 2.9 ñåðåäèíà ðàçìàõà (âûáîðêè) 2.29 ñåðèÿ 2.48 ñìåùåíèå (ðåçóëüòàòà ïðîâåðêè) 3.13 ñìåùåíèå îöåíêè 2.54 ñîâîêóïíîñòü (ãåíåðàëüíàÿ) 2.3 ñðåäíåå àðèôìåòè÷åñêîå 2.26 ñðåäíåå àðèôìåòè÷åñêîå âçâåøåííîå 2.27 ñòàòèñòèêà 2.45 ñòàòèñòèêà ïîðÿäêîâàÿ 2.46 ñòåïåíü ñâîáîäû 2.85 ñõîäèìîñòü 3.15 òàáëèöà ñîïðÿæåííîñòè äâóõ ïðèçíàêîâ 2.22 òî÷íîñòü (ðåçóëüòàòà ïðîâåðêè) 3.11 òðåíä 2.47 óðîâåíü äîâåðèÿ 2.59 óðîâåíü çíà÷èìîñòè (êðèòåðèÿ) 2.70 óñëîâèÿ âîñïðîèçâîäèìîñòè 3.21 óñëîâèÿ ïîâòîðÿåìîñòè 3.16 ôóíêöèÿ ìîùíîñòè êðèòåðèÿ 2.80 ôóíêöèÿ ðàñïðåäåëåíèÿ 1.4 ôóíêöèÿ ðàñïðåäåëåíèÿ (âåðîÿòíîñòåé) ìàññ 1.6 ôóíêöèÿ ðàñïðåäåëåíèÿ äâóìåðíàÿ 1.7 ôóíêöèÿ ðàñïðåäåëåíèÿ ìíîãîìåðíàÿ 1.8 õàðàêòåðèñòèêà îïåðàòèâíàÿ 2.82 ÷àñòîòà 2.11 ÷àñòîòà êóìóëÿòèâíàÿ îòíîñèòåëüíàÿ 2.14 ÷àñòîòà íàêîïëåííàÿ êóìóëÿòèâíàÿ 2.12 ÷àñòîòà îòíîñèòåëüíàÿ 2.13 ÀËÔÀÂÈÒÍÛÉ ÓÊÀÇÀÒÅËÜ
ÒÅÐÌÈÍΠÍÀ ÀÍÃËÈÉÑÊÎÌ ßÇÛÊÅ
c2-distribution 1.39 c2-test 2.86 accepted reference value 3.4 accuracy 3.11 aggregated sample 4.28 alternative hypothesis 2.66 analysis sample 4.32 arithmetic mean 2.26 arithmetic weighted mean 2.27 average 2.26 average range 2.31 bar chart 2.18 bar diagram 2.18 beta distribution 1.45 bias 3.13 bias of estimator 2.54 binomial distribution 1.49 bivariate distribution function 1.7 bivariate frequency distribution 2.20 bivariate Laplace - Gauss distribution 1.53 bivariate normal distribution 1.53 bulk sampling 4.27 cell 2.7 central moment of order q 1.28 central moment of order q, sample 2.37 centered random variable 1.21 chance causes 2.92 characteristic 2.2 chi-squared distribution 1.39 chi-squared test 2.86 class 2.7 class boundaries 2.8 class limits 2.8 class width 2.10 cluster sampling 4.18 coefficient of variation 1.24 coefficient of variation, sample 2.35 composite hypothesis 2.68 conditional expectation 1.20 conditional frequency distribution 2.25 conditional probability distribution 1.10 confidence coefficient 2.59 confidence level 2.59 confidence limit 2.60 contingency table 2.22 conventional true value (of a quantity) 3.3 correlation 1.13 correlation coefficient 1.33 correlation coefficient, sample 2.41 covariance 1.32 covariance, sample 1.32 critical region 2.71 critical value 2.72 cumulative frequency 2.12 cumulative frequency polygon 2.19 cumulative relative frequency 2.14 degree of freedom 2.85 distribution free-test 2.69 distribution function 1.4 duplicate sample 4.12 entity 2.1 error of result 3.8 error of the first kind 2.75 error of the second kind 2.77 estimate 2.51 estimation 2.49 estimator 2.50 estimator error 2.52 expectation 1.18 expected value 1.18 exponential distribution 1.43 F-distribution 1.41 final sample 4.23 Frechet distribution 1.47 frequency 2.11 frequency distribution 2.15 F-test 2.88 gamma distribution 1.44 goodness of fit of a distribution 2.63 gross sample 4.29 Gumbel distribution 1.46 histogram 2.17 hypergeometric distribution 1.52 increment 4.25 independence 1.11 item 2.1 joint central moment of orders q and s 1.31 joint central moment of orders q and s, sample 2.39 joint moment of orders q and s about an origin (a,
b) 1.30 joint moment of orders q and s about the origin 1.29 joint moment of orders q and s about the origin, sample 2.38 laboratory sample 4.31 Laplace - Gauss distribution 1.37 log-normal distribution 1.42 marginal expectation 1.19 marginal frequency distribution 2.24 marginal probability distribution 1.9 mean 1.18 mean deviation 2.32 mean range 2.31 measurand 3.5 (measurable) quantity 3.1 median 1.15 median, sample 2.28 mid-point of class 2.9 mid-range 2.29 mode 1.17 moment of order q about an origin a 1.27 moment of order q about the origin 1.26 moment of order q about the origin, sample 2.36 multinomial distribution 1.55 multi-stage cluster sampling 4.20 multi-stage sampling 4.19 multivariate distribution function 1.8 multivariate frequency distribution 2.23 negative binomial distribution 1.50 nested sampling 4.19 normal distribution 1.37 null hypothesis 2.66 one-sided confidence interval 2.58 one-sided test 2.73 operating characteristic 2.82 operating characteristic curve 2.83 order statistics 2.46 outliers 2.64 parameter 1.12 periodic systematic sampling 4.16 Poisson distribution 1.51 population 2.3 power curve 2.81 power function of a test 2.80 power of a test 2.79 precision 3.14 primary sample 4.21 probability 1.1 probability density function 1.5 probability distribution 1.3 probability mass function 1.6 quantile 1.14 quantity (measurable) 3.1 quartile 1.16 random error of result 3.9 random sample 4.8 random variable 1.2 randomization 2.91 range 2.30 rectangular distribution 1.36 regression coefficient, sample 2.44 relative frequency 2.13 repeatability 3.15 repeatability conditions 3.16 repeatability critical difference 3.19 repeatability limit 3.18 repeatability standard deviation 3.17 repetition 2.89 replication 2.90 reproducibility 3.20 reproducibility conditions 3.21 reproducibility critical difference 3.24 reproducibility limit 3.23 reproducibility standard deviation 3.22 run 2.48 sample 4.2 sample division 4.11 sample preparation 4.30 sample size 4.3 sampling 4.4 sampling error 2.53 sampling fraction 4.24 sampling frame 2.4 sampling interval 4.17 sampling procedure 4.5 sampling unit 4.1 sampling with replacement 4.6 sampling without replacement 4.7 scatter diagram 2.21 secondary sample 4.22 significance level 2.70 significant result (at the closen significance level a) 2.84 simple hypothesis 2.67 simple random sample 4.9 standard deviation 1.23 standard, sampling 2.34 standard error 2.56 standardized bivariate Laplace-Gauss distribution 1.54 standardized bivariate normal distribution 1.54 standardized Laplace-Gauss distribution 1.38 standardized normal distribution 1.38 standardized random variable 1.25 statistical coverage interval 2.61 statistical coverage limits 2.62 statistical test 2.65 statistics 2.45 stratification 4.13 stratified sampling 4.14 Students distribution 1.40 Students test 2.87 subpopuiation 2.5 subsample 4.10 systematic error of result 3.10 systematic sampling 4.15 t-distribirtion 1.40 t-test 2.87 test piece 4.26 test result 3.7 test sample 4.32 trend 2.47 true value (of a quantity) 3.2 trueness 3.12 two-sided confidence interval 2.57 two-sided test 2.74 two-way table of frequencies 2.22 type I error probability 2.76 type I extreme value distribution 1.46 type II error probability 2.78 type II extreme value distribution 1.47 type III extreme value distribution 1.48 unbiased estimator 2.55 uncertainty 3.25 uniform distribution 1.36 univariate frequency distribution 2.16 variance 1.22 variance, sampling 2.33 variate 1.2 Weibull distribution 1.48 weighted average 2.27 ÀËÔÀÂÈÒÍÛÉ
ÓÊÀÇÀÒÅËÜ ÒÅÐÌÈÍΠÍÀ ÔÐÀÍÖÓÇÑÊÎÌ ßÇÛÊÅ
abequation d’une distribution 2.63 base d’echantillonnage 2.4 biais 3.13 biais d’un estimateur 2.54 caractere 2.2 causes aleatoires 2.92 centre de classe 2.9 classe 2.7 classe, largeur de 2.10 coefficient de correlation 1.33, 2.41 coefficient de regression 2.44 coefficient de variation 1.24, 2.35 conditions de repetabilite 3.16 conditions de reproductibilite 3.21 correlation 1.13 courbe d’efficacite 2.83 courbe de puissance 2.81 courbe de regression 1.34, 2.42 degre de liberte 2.85 diagramme en batons 2.18 difference critique de repetabilite 3.19 difference critique de reproductibilite 3.24 distribution d’effectif 2.15 distribution d’effectif a deux variables 2.20 distribution d’effectif a plusieurs variables 2.23 distribution d’effectif a une variable 2.16 distribution d’effectif conditionnelle 2.25 distribution d’effectif marginale 2.24 division d’un echantillon 4.11 ecart moyen 2.32 ecart-type de repetabilite 3.17 ecart-type de reproductibilite 3.22 echantillon 4.2 echantillon au hasard 4.8 echantillon dedouble 4.12 echantillon d’ensemble 4.28 echantillon final 4.23 echantillon global 4.29 echantillon pour analyse 4.32 echantillon pour essai 4.32 echantillon pour laboratoire 4.31 echantillon secondaire 4.22 echantillon simple au hasard 4.9 echantillonnage 4.4 echantillonnage a plusieurs degrees 4.19 echantillonnage avec remise 4.6 echantillonnage en grappe a plusieurs degrees 4.20 echantillonnage en grappe 4.18 echantillonnage en serie 4.19 echantillonnage en vrac 4.27 echantillonnage exhaustif 4.7 echantillonnage non exhaustif 4.6 echantillonnage primaire 4.21 echantillonnage sans remise 4.7 echantillonnage stratifie 4.14 echantillonnage systematique 4.15 echantillonnage systematique periodique 4.16 effectif 2.11 effectif cumule 2.12 effectif d’echantillon 4.3 efficacite 2.82 entite 2.1 eprouvette 4.26 erreur aleatoire de resultat 3.9 erreur d’echantillonnage 2.53 erreur de premiere espece 2.75 erreur de resultat 3.8 erreur d’estimation 2.52 erreur de seconde espece 2.77 erreur systematique de resultat 3.10 erreur-type 2.56 esperance mathematique 1.18 esperance mathematique conditionnelle 1.20 esperance mathematique marginale 1.19 estimateur 2.50 estimateur sans biais 2.55 estimation 2.49 estimation (resultat) 2.51 etendue 2.30 etendue moyenne 2.31 exactitude 3.11 fidelite 3.14 fonction d’efficacite d’un test 2.82 fonction de densite de probabilite 1.5 fonction de masse 1.6 fonction de puissance d’un test 2.80 fonction de repartition 1.4 fonction de repartition a deux variables 1.7 fonction de repartition a plusieurs variables 1.8 fraction de sondage 4.24 frequence 2.13 frequence cumulee 2.14 frontieres de classe 2.8 grandeur (mesurable) 3.1 histogramme 2.17 hypergeometrique, loi 1.52 hypothese alternative 2.66 hypothese composite 2.68 hypothese nulle 2.66 hypothese simple 2.67 incertitude 3.25 independance 1.11 individu 2.1 intervalle d’echantillonnage 4.17 intervalle de confiance bilateral 2.57 intervalle de confiance unilateral 2.58 intervalle statistique de dispersion 2.61 justesse 3.12 Laplace - Gauss, loi de 1.37 Laplace - Gauss a deux variables, loi de 1.53 Laplace - Gauss reduite, loi de 1.38 Laplace - Gauss reduite a deux variables, loi de 1.54 largeur de classe 2.10 limite de confiance 2.60 limite de repetabilite 3.18 limite de reproductibilite 3.23 limites de classe 2.8 limites statistiques de dispersion 2.62 loi beta 1.45 loi binomiale 1.49 loi binomiale negative 1.50 loi de chi carre 1.39 loi de F 1.41 loi de Frechet 1.47 loi de Gumbel 1.46 loi de c2 1.39 loi de Laplace - Gauss 1.37 loi de Laplace - Gauss a deux variables 1.53 loi de Laplace - Gauss reduite 1.38 loi de Laplace - Gauss reduite a deux variables 1.54 loi de Poisson 1.51 loi de probabilite conditionnelle 1.10 loi de probabilite 1.3 loi de probabilite marginale 1.9 loi des valeurs extremes de type I 1.46 loi des valeurs extremes de type II 1.47 loi des valeurs extremes de type III 1.48 loi de Student 1.40 loi de t 1.40 loi de Weibull 1.48 loi exponentielle 1.43 loi gamma 1.44 loi hypergeometrique 1.52 loi log-normale 1.42 loi multinomiale 1.55 loi normale 1.37 loi normale a deux variables 1.53 loi normale reduite 1.38 loi normale reduite a deux variables 1.54 loi rectangulaire 1.36 loi uniforme 1.36 mesurande 3.5 milieu de 1etendue 2.29 mode 1.17 moment centre d’ordre q 1.28, 2.37 moment centre d’ordres q et s 1.31, 2.39 moment d’ordre q par rapport a l’origine 1.26, 2.36 moment d’ordres q et s a partir de l’origine 1.29, 2.38 moment d’ordre q a partir d’une origine a 1.27 moment d’ordres q et s a partir d’une origine (a,
b) 1.30 moyenne arithmetique 2.26 moyenne arithmetique ponderee 2.27 moyenne ponderee 2.27 niveau de confiance 2.59 niveau de signification 2.70 nuage de points 2.21 parametre 1.12 polygone d’effectif cumule 2.19 population 2.3 prelevement elementaire 4.25 preparation d’un echantillon 4.30 procedure d’echantillonnage 4.5 probabilite 1.1 probabilite d’erreur de premiere espece 2.76 probabilite d’erreur de seconde espece 2.78 puissance d’un test 2.79 quantile 1.14 quartile 1.16 randomisation 2.91 region critique 2.71 repetabilite 3.15 repetition 2.89 replique 2.90 reproductibilite 3.20 resultat dessai 3.7 resultat significatif (au niveau de signification a choisi) 2.84 sous-echantillon 4.10 sous-population 2.5 statistique 2.45 statistique d’ordre 2.46 stratification 4.13 suite 2.48 surface de regression 1.35, 2.43 table d’effectif a double entree 2.22 tableau de contingence 2.22 taux d’echantillonnage 4.24 tendance 2.47 test bilateral 2.74 test de chi carre 2.86 test de Student 2.87 test F 2.88 test c2 2.86 test non parametrique 2.69 test statistique 2.65 test t 2.87 test unilateral 2.73 unite d’echantillonnage 4.1 valeur conventionnellement vraie 3.3 valeur critique 2.72 valeur de reference acceptee 3.4 valeur esperee 1.18 valeur vraie (d’une grandeur) 3.2 valeurs aberrantes 2.64 valeurs extremes de type I, loi de 1.46 valeurs extremes de type II, loi de 1.47 valeurs extremes de type III, loi de 1.48 validite de l’ajustement 2.63 variable aleatoire 1.2 variable aleatoire centree 1.21 variable aleatoire centree reduite 1.25 variance 2.33 variance 1.22 ÏÐÈËÎÆÅÍÈÅ À
(ñïðàâî÷íîå)
ÁÈÁËÈÎÃÐÀÔÈß[1] Ìåæäóíàðîäíûé ñëîâàðü îñíîâíûõ è îáùèõ
òåðìèíîâ ìåòðîëîãèè. - ISO/IEC/OIML/BIPM. - Æåíåâà, 1984. [2] ÌÈ 2247-93 Ðåêîìåíäàöèÿ. Ãîñóäàðñòâåííàÿ
ñèñòåìà îáåñïå÷åíèÿ åäèíñòâà èçìåðåíèé. Ìåòðîëîãèÿ. Îñíîâíûå òåðìèíû è
îïðåäåëåíèÿ. - Ñ.-Ïá.: ÂÍÈÈÌ èì. Ä. È. Ìåíäåëååâà, 1994. Êëþ÷åâûå ñëîâà: òåîðèÿ âåðîÿòíîñòåé, ðàñïðåäåëåíèå
ñëó÷àéíîé âåëè÷èíû, ñòàòèñòèêà, ñëó÷àéíàÿ âûáîðêà, ñðåäíåå, äèñïåðñèÿ,
òî÷íîñòü, ïðàâèëüíîñòü, ïðåöèçèîííîñòü |
|
|